Examples

Example 1: Find
$$\sqrt[3]{(7-\sqrt{3})^3}$$
 exactly

Solution

Since the index is **odd**, we use $\sqrt[n]{x^n} = x$ in **this** case

Thus
$$\sqrt[3]{(7-\sqrt{3})^3} = 7 - \sqrt{3}$$

Ans
$$7-\sqrt{3}$$

Example 2: Find
$$\sqrt[4]{(10-\sqrt{5})^4}$$
 exactly

Solution

Since the index is **even**, we use $\sqrt[n]{x^n} = |x|$ in **this** case

Thus
$$\sqrt[4]{(10-\sqrt{5})^4} = |10-\sqrt{5}|$$

Now $10 - \sqrt{5} \ge 0$; so we use |x| = x in this case

Thus
$$|10 - \sqrt{5}| = 10 - \sqrt{5}$$

Ans
$$10 - \sqrt{5}$$

Example 3: Find $\sqrt[6]{(1-\sqrt{7})^6}$ exactly

Solution

Since the index is **even**, we use $\sqrt[n]{x^n} = |x|$ in **this** case

Thus
$$\sqrt[6]{(1-\sqrt{7})^6} = |1-\sqrt{7}|$$

Now $1 - \sqrt{7} < 0$; so we use |x| = -x in this case

Thus
$$|1 - \sqrt{7}| = -(1 - \sqrt{7})$$

Ans $-1 + \sqrt{7}$

Example 4: Find $\sqrt{(\sqrt[3]{6} - \sqrt[3]{13})^2}$ exactly

Solution

Since the index is **even**, we use $\sqrt[n]{x^n} = |x|$ in **this** case

Thus
$$\sqrt{(\sqrt[3]{6} - \sqrt[3]{13})^2} = |\sqrt[3]{6} - \sqrt[3]{13}|$$

Now $\sqrt[3]{6} - \sqrt[3]{13} < 0$; so we use |x| = -x in this case

Thus
$$|\sqrt[3]{6} - \sqrt[3]{13}| = -(\sqrt[3]{6} - \sqrt[3]{13})$$

Ans $-\sqrt[3]{6} + \sqrt[3]{13}$