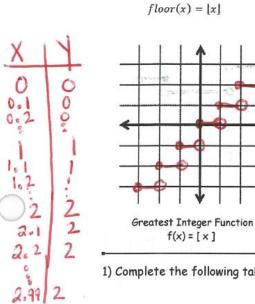
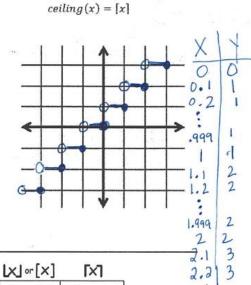
Step Functions

*The FLOOR function rounds down to the greatest integer less than or equal to the number. Also known as the [Greatest Integer Function]

The CEILING function rounds up to the lowest integer greater than or equal to the number.





1) Complete the following table.

	[X] or [X]	Γ×Ί
×	floor (x)	ceiling (x)
4.8	4	5
-1.3	-2	-1
2.2	2	3
6	0	6
-3	-3	-3
-2/3	-1	0
π	3	4

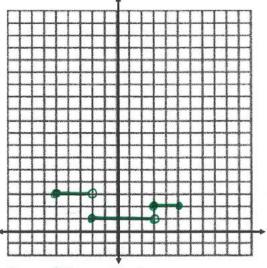
2) The following piecewise function is an example of a step-function.

$$S(x) = \begin{cases} 3 & -5 \le x < -2 \\ 1 & -2 \le x < 3 \\ 2 & 3 \le x \le 5 \end{cases}$$

a) Graph this function and state the domain and range.

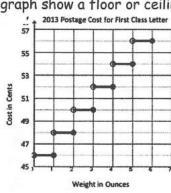
R. 31, 2, 33

b) Why is this type of function called a step function?



The horizontal line Segments Stop up & down like "Steps"

3) Does the following graph show a floor or ceiling function?



Ceiling function

Weight in ounces,	2	2.2	3	3.5	4
Cost of postage, $C(x)$	48	50	50	52	62

- a) Complete the table.
- b) If it costs Trina \$0.54 to mail her letter, how many ounces did it weigh?

it weighed more than 40Z., but less than or equal c) Write a formula involving step functions that represents the cost of postage to 50Z. based on the graph shown above.

- 4) The table below lists the total cost for parking for a period of time on a street in Albany, N.Y. The total cost is for any length of time up to and including the hours parked. For example, parking for up to and including 1 hour would cost \$1.25; parking for 3.5 hours would cost \$5.75.
- a) Graph the step function that would represent this situation.

Hours Parked	Total Cost	(*)
1	1.25) 1.25
2	2.50) 1.50
3	4.00	1.75
4	5.75	1
5	7.75	1 2.0
6	10.00	1 2.2

Ptal

b) Write it as a piecewise function.

$$f(X) = \begin{cases} 1.25, 0 < X \le 1 \\ 2.50, 1 < X \le 2 \\ 4, 2 < X \le 3 \\ 5.75, 3 < X \le 4 \\ 7.75, 4 < X \le 5 \\ 10, 5 < X \le 6 \end{cases}$$

c) Explain how the cost per hour to park changes over the six-hour period.

The cost increases by \$6.25 (*)

For each additional hour.

5) Jim is parking his car at the airport while he goes om a trip. He looked up the rates for the parking garage:

Garage Parking Rates		
Located on floors two, three, four and five of the pe	arking garage	
First Hou	r: \$2.00	
Each Additional Hou	r: \$2.00	
* Maximum Daily Rate	\$12.00	
Five Consecutive Days	\$50.00	
Seven Consecutive Days	\$64.00	

time	Cost	time	Cost
1	2	le to 24	12
2	4	2 days	24
3	6	3 days	36
4 /	8	4 days	48
5	10	5-4 days	50
6	(12)	Flais	64
- 1	Max Dail	*	

a) Write a piecewise function that models this situation. Use step functions!

$$f(x) = \begin{cases} 2 \lceil x \rceil, & 0 \angle x \angle 6 \\ 12 \lceil \frac{x}{24} \rceil, & 6 \angle x \angle 120 \\ 50, & 120 \angle x \angle 168 \\ 64, & 128 \angle x \angle 192 \end{cases}$$

b) How much would it cost him if he parked his car for 4 hours? 2 days?

Sum It Up!

- · Piecewise functions can be used to model many real life situations.
- The floor and ceiling function are both examples of step functions.
- A step function has a constant output and resembles steps when graphed.