Hence, we get another piecewise definition, depending on whether the index is even or odd:

$$\sqrt[n]{x^n} = \begin{cases} x; & \text{if } n \text{ is odd} \\ |x|; & \text{if } n \text{ is even} \end{cases}$$

Thus "Power First, Then Root" \Longrightarrow cancel only if the index is odd; otherwise absolute value!

Properties of Radicals

$$\sqrt[n]{a} = a^{\frac{1}{n}} \qquad \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a} \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$\sqrt[n]{a^n} = a$$
, if n is odd

$$\sqrt[n]{a^n} = |a|$$
, if *n* is even

$$\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab}$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

Summary of Formulas

1.
$$\sqrt[n]{x} = x^{\frac{1}{n}}$$
 UNLESS index is even with x possibly negative

2.
$$x^{\frac{m}{n}} = (\sqrt[n]{x})^m$$
 UNLESS index is even with x possibly negative

3.
$$(\sqrt[n]{x})^m = \sqrt[n]{x^m}$$
 UNLESS index is even with x possibly negative

4. Piecewise Definition of |x|:

$$|x| = \begin{cases} x; & \text{if } x \ge 0 \\ -x; & \text{if } x < 0 \end{cases}$$

5.
$$\boxed{(\sqrt[n]{x})^n = x}$$
 "Root First, Then Power" \Longrightarrow CANCEL

6. Piecewise Definition of $\sqrt[n]{x^n}$:

$$\sqrt[n]{x^n} = \begin{cases} x; & \text{if } n \text{ is odd} \\ |x|; & \text{if } n \text{ is even} \end{cases}$$