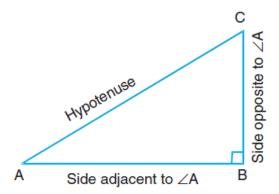
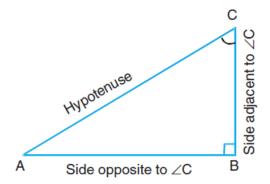
TRIGONOMETRIC RATIOS OF AN ACUTE ANGLE OF A RIGHT ANGLED TRIANGLE

Let there be a right triangle ABC, right angled at B. Here \angle A (i.e. \angle CAB) is an acute angle, AC is hypotenuse, side BC is opposite to \angle A and side AB is adjacent to \angle A.



Again, if we consider acute $\angle C$, then side AB is side opposite to $\angle C$ and side BC is adjacent to $\angle C$.



We now define certain ratios involving the sides of a right triangle, called **trigonometric** ratios.

The trigonometric ratios of $\angle A$ in right angled $\triangle ABC$ are defined as:

(i) sine A =
$$\frac{\text{side opposite to } \angle A}{\text{Hypotenuse}} = \frac{BC}{AC}$$

(ii) cosine
$$A = \frac{\text{side adjacent to } \angle A}{\text{Hypotenuse}} = \frac{AB}{AC}$$

(iii) tangent A =
$$\frac{\text{side opposite to } \angle A}{\text{side adjacent to } \angle A} = \frac{BC}{AB}$$

(iv) cosecant A =
$$\frac{\text{Hypotenuse}}{\text{side opposite to } \angle A} = \frac{AC}{BC}$$

(v) secant A =
$$\frac{\text{Hypotenuse}}{\text{side adjacent to } \angle A} = \frac{AC}{AB}$$

(vi) cotangent A =
$$\frac{\text{side adjacent to } \angle A}{\text{side opposite to } \angle A} = \frac{AB}{BC}$$

The above trigonometric ratios are abbreviated as sin A, cos A, tan A, cosec A, sec A and cot A respectively. Trigonometric ratios are abbreviated as **t-ratios**.

If we write $\angle A = \theta$, then the above results are

$$\sin \theta = \frac{BC}{AC}$$
, $\cos \theta = \frac{AB}{AC}$, $\tan \theta = \frac{BC}{AB}$
 $\csc \theta = \frac{AC}{BC}$, $\sec \theta = \frac{AC}{AB}$ and $\cot \theta = \frac{AB}{BC}$

Note: Observe here that $\sin \theta$ and $\csc \theta$ are reciprocals of each other. Similarly $\cot \theta$ and $\sec \theta$ are respectively reciprocals of $\tan \theta$ and $\cos \theta$.

Remarks

Thus in right \triangle ABC,

$$AB = 4cm$$
, $BC = 3cm$ and

$$AC = 5cm$$
, then

$$\sin \theta = \frac{BC}{AC} = \frac{3}{5}$$

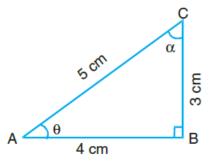
$$\cos \theta = \frac{AB}{AC} = \frac{4}{5}$$

$$\tan \theta = \frac{BC}{AB} = \frac{3}{4}$$

$$\csc \theta = \frac{AC}{BC} = \frac{5}{3}$$

$$\sec \theta = \frac{AC}{AB} = \frac{5}{4}$$

and
$$\cot \theta = \frac{AB}{BC} = \frac{4}{3}$$



In the above figure, if we take angle $C = \alpha$, then

$$\sin \alpha = \frac{\text{side opposite to } \angle \alpha}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{4}{5}$$

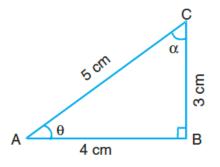
$$\cos \alpha = \frac{\text{side adjacent to } \angle \alpha}{\text{Hypotenuse}} = \frac{\text{BC}}{\text{AC}} = \frac{3}{5}$$

$$\tan \alpha = \frac{\text{side opposite to } \angle \alpha}{\text{side adjacent to } \angle \alpha} = \frac{AB}{BC} = \frac{4}{3}$$

$$\csc \alpha = \frac{\text{Hypotenuse}}{\text{side opposite to } \angle \alpha} = \frac{\text{AC}}{\text{AB}} = \frac{5}{4}$$

$$\sec \alpha = \frac{\text{Hypotenuse}}{\text{side adjacent to } \angle \alpha} = \frac{\text{AC}}{\text{BC}} = \frac{5}{3}$$

and
$$\cot \alpha = \frac{\text{side adjacent to } \angle \alpha}{\text{side opposite to } \angle \alpha} = \frac{BC}{AB} = \frac{3}{4}$$



Remarks:

- 1. Sin A or $\sin \theta$ is one symbol and $\sin \theta$ cannot be separated from A or θ . It is not equal to $\sin \times \theta$. The same applies to other trigonometric ratios.
- 2. Every t-ratio is a real number.
- 3. For convenience, we use notations $\sin^2\theta$, $\cos^2\theta$, $\tan^2\theta$ for $(\sin\theta)^2$, $(\cos\theta)^2$, and $(\tan\theta)^2$ respectively. We apply the similar notation for higher powers of trigonometric ratios.
- 4. We have restricted ourselves to t-ratios when A or θ is an acute angle.

Now the question arises: "Does the value of a t-ratio remains the same for the same angle of different right triangles?." To get the answer, let us consider a right triangle ABC, right angled at B. Let P be any point on the hypotenuse AC.

Let $PQ \perp AB$

Now in right $\triangle ABC$,

$$\sin A = \frac{BC}{AC} \qquad ----(i)$$

and in right $\triangle AQP$,

$$\sin A = \frac{PQ}{AP} \qquad ----(ii)$$
Now in $\triangle AQP$ and $\triangle ABC$,
$$\angle Q = \angle B \qquad ----(Each = 90^{\circ})$$
and $\angle A = \angle A \qquad ----(Common)$

$$\therefore \quad \triangle AQP \sim \triangle ABC$$

$$\therefore \frac{AP}{AC} = \frac{QP}{BC} = \frac{AQ}{AB}$$
or
$$\frac{BC}{AC} = \frac{PQ}{AB} \qquad ----(iii)$$

From (i), (ii), and (iii), we find that sin A has the same value in both the triangles.

Similarly, we have
$$\cos A = \frac{AB}{AC} = \frac{AQ}{AP}$$
 and $\tan A = \frac{BC}{AB} = \frac{PQ}{AQ}$

Let R be any point on AC produced. Draw RS \perp AB produced meeing it at S. You can verify that value of t-ratios remains the same in \triangle ASR also.

Thus, we conclude that the value of trigonometric ratios of an angle does not depend on the size of right triangle. They only depend on the angle.

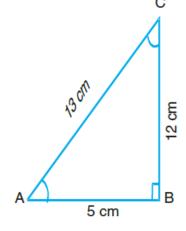
Example 22.1: In Fig. 22.6, \triangle ABC is right angled at B. If AB = 5 cm, BC = 12 cm and AC = 13 cm, find the value of tan C, cosec C and sec C.

Solution: We know that

$$\tan C = \frac{\text{side opposite to } \angle C}{\text{side adjacent to } \angle C} = \frac{AB}{BC} = \frac{5}{12}$$

cosec C =
$$\frac{\text{Hypotenuse}}{\text{side opposite to } \angle \text{C}} = \frac{\text{AC}}{\text{AB}} = \frac{13}{5}$$

and
$$\sec C = \frac{\text{Hypotenuse}}{\text{side adjacent to } \angle C} = \frac{AC}{BC} = \frac{13}{12}$$



Example 22.2: Find the value of $\sin \theta$, $\cot \theta$ and $\sec \theta$ from Fig. 22.7.

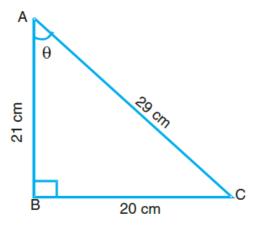


Fig. 22.7

Solution:

$$\sin \theta = \frac{\text{side opposite to } \angle \theta}{\text{Hypotenuse}} = \frac{\text{BC}}{\text{AC}} = \frac{20}{29}$$

$$\cot \theta = \frac{\text{side adjacent to } \angle \theta}{\text{side opposite to } \angle \theta} = \frac{AB}{BC} = \frac{21}{20}$$

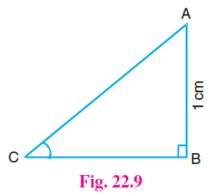
and
$$\sec \theta = \frac{\text{Hypotenuse}}{\text{side adjacent to } \angle \theta} = \frac{AC}{AB} = \frac{29}{21}$$

Example 22.4: In Fig. 22.9, \triangle ABC is right angled at B, \angle A = \angle C, AC = $\sqrt{2}$ cm and AB = 1 cm. Find the values of sin C, cos C and tan C.

Solution: In
$$\triangle ABC$$
, $\angle A = \angle C$
 $\therefore BC = AB = 1 \text{ cm}$ (Given)

$$\therefore \qquad \sin C = \frac{\text{side opposite to } \angle C}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{1}{\sqrt{2}}$$

$$\cos C = \frac{\text{side adjacent to } \angle C}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{1}{\sqrt{2}}$$



and
$$\tan C = \frac{\text{side opposite to } \angle C}{\text{side adjacent to } \angle C} = \frac{AB}{BC} = \frac{1}{1} = 1$$

Remark: In the above example, we have $\angle A = \angle C$ and $\angle B = 90^{\circ}$

$$\therefore$$
 $\angle A = \angle C = 45^{\circ}$,

$$\therefore \text{ We have } \sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}}$$
and $\tan 45^\circ = 1$

Example 22.5 : In Fig. 22.10. \triangle ABC is right-angled at C. If AB = c, AC = b and BC = a, which of the following is true?

(i)
$$\tan A = \frac{b}{c}$$

(ii)
$$\tan A = \frac{c}{b}$$

(iii)
$$\cot A = \frac{b}{a}$$

(iv)
$$\cot A = \frac{a}{b}$$

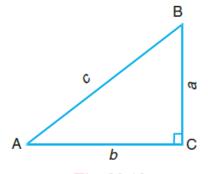


Fig. 22.10

Solution: Here
$$\tan A = \frac{\text{side opposite to } \angle A}{\text{side adjacent to } \angle A} = \frac{BC}{AC} = \frac{a}{b}$$

and
$$\cot A = \frac{\text{side adjacent to } \angle A}{\text{side opposite to } \angle A} = \frac{b}{a}$$

Hence the result (iii) i.e. $\cot A = \frac{b}{a}$ is true.