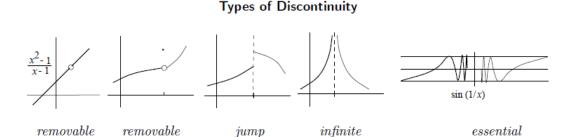
Continuity

To understand continuity, it helps to see how a function can fail to be continuous. All of the important functions used in calculus and analysis are continuous except at isolated points. Such points are called **points of discontinuity**. There are several types. Let's begin by first recalling the definition of continuity (cf. book, p. 75).

(2)
$$f(x)$$
 is **continuous** at a if $\lim_{x\to a} f(x) = f(a)$.

Thus, if a is a point of discontinuity, something about the limit statement in (2) must fail to be true.



In a **removable** discontinuity, $\lim_{x\to a} f(x)$ exists, but $\lim_{x\to a} f(x) \neq f(a)$. This may be because f(a) is undefined, or because f(a) has the "wrong" value. The discontinuity can be removed by changing the definition of f(x) at a so that its new value there is $\lim_{x\to a} f(x)$. In the left-most picture, $\frac{x^2-1}{x-1}$ is undefined when x=1, but if the definition of the function is completed by setting f(1)=2, it becomes continuous — the hole in its graph is "filled in".

In a **jump** discontinuity (Example 2), the right- and left-hand limits both exist, but are not equal. Thus, $\lim_{x\to a} f(x)$ does not exist, according to (1). The *size* of the jump is the difference between the right- and left-hand limits (it is 2 in Example 2, for instance). Though jump discontinuities are not common in functions given by simple formulas, they occur frequently in engineering — for example, the square waves in electrical engineering, or the sudden discharge of a capacitor.

In an **infinite** discontinuity (Examples 3 and 4), the one-sided limits exist (perhaps as ∞ or $-\infty$), and at least one of them is $\pm\infty$.

An essential discontinuity is one which isn't of the three previous types — at least one of the one-sided limits doesn't exist (not even as $\pm \infty$). Though $\sin(1/x)$ is a standard simple example of a function with an essential discontinuity at 0, in applications they arise rarely, presumably because Mother Nature has no use for them.

We say a function is **continuous on an interval** [a, b] if it is defined on that interval and continuous at every point of that interval. (At the endpoints, we only use the approxpiate one-sided limit in applying the definition (2).)

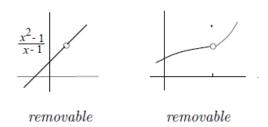
Continuity

To understand continuity, it helps to see how a function can fail to be continuous. All of the important functions used in calculus and analysis are continuous except at isolated points. Such points are called **points of discontinuity**. There are several types. Let's begin by first recalling the definition of continuity.

(2)
$$f(x)$$
 is continuous at a if $\lim_{x\to a} f(x) = f(a)$.

Thus, if a is a point of discontinuity, something about the limit statement in (2) must fail to be true.

Types of Discontinuity



In a **removable** discontinuity, $\lim_{x\to a} f(x)$ exists, but $\lim_{x\to a} f(x) \neq f(a)$. This may be because f(a) is undefined, or because f(a) has the "wrong" value. The discontinuity can be removed by changing the definition of f(x) at a so that its new value there is $\lim_{x\to a} f(x)$. In the left-most picture, $\frac{x^2-1}{x-1}$ is undefined when x=1, but if the definition of the function is completed by setting f(1)=2, it becomes continuous — the hole in its graph is "filled in".

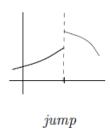
Continuity

To understand continuity, it helps to see how a function can fail to be continuous. All of the important functions used in calculus and analysis are continuous except at isolated points. Such points are called **points of discontinuity**. There are several types. Let's begin by first recalling the definition of continuity (cf. book, p. 75).

(2)
$$f(x)$$
 is continuous at a if $\lim_{x\to a} f(x) = f(a)$.

Thus, if a is a point of discontinuity, something about the limit statement in (2) must fail to be true.

Types of Discontinuity



In a **jump** discontinuity (Example 2), the right- and left-hand limits both exist, but are not equal. Thus, $\lim_{x\to a} f(x)$ does not exist, according to (1). The *size* of the jump is the difference between the right- and left-hand limits (it is 2 in Example 2, for instance). Though jump discontinuities are not common in functions given by simple formulas, they occur frequently in engineering — for example, the square waves in electrical engineering, or the sudden discharge of a capacitor.

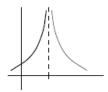
Continuity

To understand continuity, it helps to see how a function can fail to be continuous. All of the important functions used in calculus and analysis are continuous except at isolated points. Such points are called **points of discontinuity**. There are several types. Let's begin by first recalling the definition of continuity (cf. book, p. 75).

(2)
$$f(x)$$
 is **continuous** at a if $\lim_{x \to a} f(x) = f(a)$.

Thus, if a is a point of discontinuity, something about the limit statement in (2) must fail to be true.

Types of Discontinuity



infinite

In an **infinite** discontinuity the one-sided limits exist (perhaps as ∞ or $-\infty$), and at least one of them is $\pm\infty$.

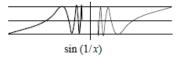
Continuity

To understand continuity, it helps to see how a function can fail to be continuous. All of the important functions used in calculus and analysis are continuous except at isolated points. Such points are called **points of discontinuity**. There are several types. Let's begin by first recalling the definition of continuity (cf. book, p. 75).

(2)
$$f(x)$$
 is continuous at a if $\lim_{x\to a} f(x) = f(a)$.

Thus, if a is a point of discontinuity, something about the limit statement in (2) must fail to be true.

Types of Discontinuity



essential

An essential discontinuity is one which isn't of the three previous types — at least one of the one-sided limits doesn't exist (not even as $\pm \infty$). Though $\sin(1/x)$ is a standard simple example of a function with an essential discontinuity at 0, in applications they arise rarely, presumably because Mother Nature has no use for them.

Continuity

To understand continuity, it helps to see how a function can fail to be continuous. All of the important functions used in calculus and analysis are continuous except at isolated points. Such points are called **points of discontinuity**. There are several types. Let's begin by first recalling the definition of continuity (cf. book, p. 75).

(2)
$$f(x)$$
 is continuous at a if $\lim_{x\to a} f(x) = f(a)$.

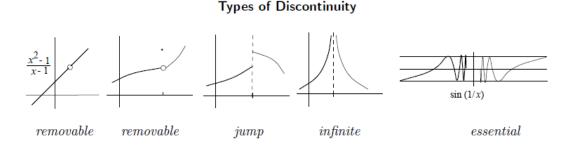
We say a function is **continuous on an interval** [a, b] if it is defined on that interval and continuous at every point of that interval. (At the endpoints, we only use the approxpiate one-sided limit in applying the definition (2).)

Continuity

To understand continuity, it helps to see how a function can fail to be continuous. All of the important functions used in calculus and analysis are continuous except at isolated points. Such points are called **points of discontinuity**. There are several types. Let's begin by first recalling the definition of continuity (cf. book, p. 75).

(2)
$$f(x)$$
 is **continuous** at a if $\lim_{x\to a} f(x) = f(a)$.

Thus, if a is a point of discontinuity, something about the limit statement in (2) must fail to be true.



In a **removable** discontinuity, $\lim_{x\to a} f(x)$ exists, but $\lim_{x\to a} f(x) \neq f(a)$. This may be because f(a) is undefined, or because f(a) has the "wrong" value. The discontinuity can be removed by changing the definition of f(x) at a so that its new value there is $\lim_{x\to a} f(x)$. In the left-most picture, $\frac{x^2-1}{x-1}$ is undefined when x=1, but if the definition of the function is completed by setting f(1)=2, it becomes continuous — the hole in its graph is "filled in".

In a **jump** discontinuity (Example 2), the right- and left-hand limits both exist, but are not equal. Thus, $\lim_{x\to a} f(x)$ does not exist, according to (1). The *size* of the jump is the difference between the right- and left-hand limits (it is 2 in Example 2, for instance). Though jump discontinuities are not common in functions given by simple formulas, they occur frequently in engineering — for example, the square waves in electrical engineering, or the sudden discharge of a capacitor.

In an **infinite** discontinuity (Examples 3 and 4), the one-sided limits exist (perhaps as ∞ or $-\infty$), and at least one of them is $\pm\infty$.

An essential discontinuity is one which isn't of the three previous types — at least one of the one-sided limits doesn't exist (not even as $\pm \infty$). Though $\sin(1/x)$ is a standard simple example of a function with an essential discontinuity at 0, in applications they arise rarely, presumably because Mother Nature has no use for them.

We say a function is **continuous on an interval** [a, b] if it is defined on that interval and continuous at every point of that interval. (At the endpoints, we only use the approxpiate one-sided limit in applying the definition (2).)