Example Which of the following functions are continuous on the interval $(0, \infty)$:

$$f(x) = \frac{x^3 + x - 1}{x + 2},$$
 $g(x) = \frac{x^2 + 3}{\cos x},$ $h(x) = \frac{\sqrt{x^2 + 1}}{x - 2},$ $k(x) = |\sin x|.$

Answers

Example Which of the following functions are continuous on the interval $(0, \infty)$:

$$f(x) = \frac{x^3 + x - 1}{x + 2},$$
 $g(x) = \frac{x^2 + 3}{\cos x},$ $h(x) = \frac{\sqrt{x^2 + 1}}{x - 2},$ $k(x) = |\sin x|.$

Since f(x) is a rational function, it is continuous everywhere except at x = -2, Therefore it is continuous on the interval $(0, \infty)$.

By Theorem 2 and the continuity of polynomials and trigonometric functions, g(x) is continuous except where $\cos x = 0$. Since $\cos x = 0$ for $x = \frac{\pi}{2}, \frac{3\pi}{2}, \ldots$, we have g(x) is not continuous on $(0, \infty)$.

By theorems 2 and 3, h(x) is continuous everywhere except at x = 2. In fact x = 2 is not in the domain of this function. Hence the function is not continuous on the interval $(0, \infty)$.

Since $k(x) = |\sin x| = F(G(x))$, where $G(x) = \sin x$ and F(x) = |x|, we have that k(x) is continuous everywhere on its domain since both F and G are both continuous everywhere on their domains. Its not difficult to see that the domain of k is all real numbers, hence k is continuous everywhere. (What does its graph look like?)

Example Which of the following functions have a removable discontinuity at x = 2?:

$$f(x) = \frac{x^3 + x - 1}{x - 2},$$
 $g(x) = \frac{x^2 - 4}{x - 2},$ $h(x) = \frac{\sqrt{x^2 + 1}}{x - 2}.$

Answers

Example Which of the following functions have a removable discontinuity at x = 2?:

$$f(x) = \frac{x^3 + x - 1}{x - 2},$$
 $g(x) = \frac{x^2 - 4}{x - 2},$ $h(x) = \frac{\sqrt{x^2 + 1}}{x - 2}.$

 $\lim_{x\to 2} f(x)$ does not exist, since $\lim x \to 2(x^3+x-1)=9$ and $\lim x \to 2(x-2)=0$. Therefore the

discontinuity is not removable. $\lim_{x\to 2} g(x) = \lim_{x\to 2} \frac{(x-2)(x+2)}{x-2} = \lim_{x\to 2} (x+2) = 4$. Therefore the discontinuity at x=2 is removable by defining a piecewise function:

$$g_1(x) = \begin{cases} g(x) & x \neq 2 \\ 4 & x = 2 \end{cases}$$

 $\lim_{x\to 2} h(x)$ does not exist, since $\lim_{x\to 2} (\sqrt{x^2+1}) = \sqrt(5)$ and $\lim x \to 2(x-2) = 0$. Therefore the discontinuity is not removable.

Example Find the domain of the following function and use Theorems 1, 2 and 3 to show that it is continuous on its domain:

$$k(x) = \frac{\sqrt[3]{\cos x}}{x - 10}.$$

Answers

Example Find the domain of the following function and use Theorems 1, 2 and 3 to show that it is continuous on its domain:

 $k(x) = \frac{\sqrt[3]{\cos x}}{x - 10}.$

The domain of this function is all values of x except x=10, since $\cos x$ is defined everywhere as is the cubed root function. Theorem 1 says that the cosine function is continuous everywhere and theorem 3 says that $f(x) = \sqrt[3]{\cos x}$ is continuous for all real numbers since the cubed root function is continuous everywhere. Now we see from Theorem 2 that $k(x) = \frac{f(x)}{g(x)}$ is continuous everywhere except where g(x) = x - 10 = 0, that is at x = 10.

Example Evaluate the following limits:

$$\lim_{x \to \pi} \sqrt[3]{2 + \cos x} \qquad \qquad \lim_{x \to \frac{\pi}{2}^{-}} \frac{\sqrt[3]{\sin x}}{x - \frac{\pi}{2}}$$

Answers

Example Evaluate the following limits:

$$\lim_{x \to \pi} \sqrt[3]{2 + \cos x} \qquad \qquad \lim_{x \to \frac{\pi}{2}^{-}} \frac{\sqrt[3]{\sin x}}{x - \frac{\pi}{2}}$$

Since $G(x) = 2 + \cos x$ and $F(x) = \sqrt[3]{x}$ are continuous everywhere, we have F(Gx) is continuous on its domain and we can calculate the first limit by evaluation:

$$\lim_{x \to \pi} \sqrt[3]{2 + \cos x} = \sqrt[3]{2 + \cos \pi} = \sqrt[3]{2 - 1} = 1.$$

As above, we have $\sqrt[3]{\sin x}$ is continuous on its domain, therefore $\lim_{x\to\frac{\pi}{2}}\sqrt[3]{\sin x}=\sqrt[3]{\sin\frac{\pi}{2}}=1$. Since $\lim_{x\to\frac{\pi}{2}}(x-\frac{\pi}{2})=0$, we have $\frac{\sqrt[3]{\sin x}}{x-\frac{\pi}{2}}$ approaches ∞ in absolute value as x approaches $\frac{\pi}{2}$. As $x\to\frac{\pi}{2}^-$, $\sin(x)>0$, hence $\sqrt[3]{\sin x}>0$. As $x\to\frac{\pi}{2}^-$, $x-\frac{\pi}{2}<0$, therefore the quotient has negative values and

$$\lim_{x \to \frac{\pi}{2}^-} \frac{\sqrt[3]{\sin x}}{x - \frac{\pi}{2}} = -\infty.$$

Example What is the domain of the following function and what are the (largest) intervals on which it is continuous?

$$g(x) = \frac{1}{\sqrt{1 - \sqrt{x}}}.$$

Answers

Example What is the domain of the following function and what are the (largest) intervals on which it is continuous?

$$g(x) = \frac{1}{\sqrt{1 - \sqrt{x}}}.$$

The domain of this function is all x where $\sqrt{1-\sqrt{x}}\neq 0$, i.e. all x where $x\neq 1$. By theorems 3 and 2, the function is continuous everywhere on its domain, therefore it is continuous on the intervals $(-\infty,1)$ and $(1,\infty)$.

Example use the intermediate value theorem to show that there is a root of the equation in the specified interval:

$$\sqrt[3]{x} = 1 - x$$
 (0,1).

Answers

Example use the intermediate value theorem to show that there is a root of the equation in the specified interval:

$$\sqrt[3]{x} = 1 - x$$
 (0, 1).

Let $g(x) = \sqrt[3]{x} - 1 + x$. We have g(0) = -1 < 0 and g(1) = 1 > 0. therefore by the intermediate value theorem, there is some number c with 0 < c < 1 for which g(c) = 0. That is

$$\sqrt[3]{c} = 1 - c$$

as desired.