Continuity Practice

Some students say they have trouble with multipart functions. Other say they have issues with continuity problems. Here is a random assortment of old midterm questions that pertain to continuity and multipart functions. See if you can complete these problems. Solutions are posted online.

Remember a function f(x) is continuous at x = a if $\lim_{x \to a^-} f(x)$, $\lim_{x \to a^-} f(x)$, $\lim_{x \to a^-} f(x)$, $\lim_{x \to a^-} f(x)$ are all defined and are all the same.

$$1. \ \, \text{Let} \, \, f(x) = \left\{ \begin{array}{ll} \cos(x) + 1 & \text{, if} \, \, x \leq 0; \\ 2 - 3x & \text{, if} \, \, x > 0. \end{array} \right. \, \text{Determine if this function is continuous at} \, \, x = 0.$$

2. Let
$$f(x)=\left\{ egin{array}{ll} \frac{\sqrt{9x^4+x^2}}{5x^2+3x+1} & \text{, if } x\leq 0;\\ x & \text{, if } x<0. \end{array} \right.$$
 . Is f continuous at $x=0$?

3. Let
$$f(x) = \begin{cases} e^x & \text{, if } x < 0; \\ 9x^2 + x + 1 & \text{, if } x \geq 0. \end{cases}$$
. Is f continuous at $x = 0$?

4. Let
$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) + 3 & \text{, if } x \neq 0; \\ 1 & \text{, if } x = 0. \end{cases}$$
. Is f continuous at $x = 0$?

Answers

1. Let
$$f(x) = \begin{cases} \cos(x) + 1 & \text{, if } x \leq 0; \\ 2 - 3x & \text{, if } x > 0. \end{cases}$$
 Determine if this function is continuous at $x = 0$.

Solution:

1. The function is defined at x = 0 and the value is $f(0) = \cos(0) + 1 = 2$.

2. Since $y = \cos(x) + 1$ is continuous at x = 0, we have:

$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \cos(x) + 1 = \cos(0) + 1 = 2.$$
3. Since $y = 2 - 3x$ is continuous at $x = 0$, we have:

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} 2 - 3x = 2 - 3(0) = 2.$$

 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} 2 - 3x = 2 - 3(0) = 2.$ Since all three of these values are the same, the function is continuous at x=0.

2. Let
$$f(x)=\left\{\begin{array}{ll} \frac{\sqrt{9x^4+x^2}}{5x^2+3x+1} & \text{, if } x\leq 0;\\ x & \text{, if } x>0. \end{array}\right.$$
 . Is f continuous at $x=0$?

Solution:

1. The function is defined at x = 0 and its value is $f(0) = \frac{\sqrt{9(0)^4 + (0)^2}}{5(0)^2 + 3(0) + 1} = 0$.

2. Since $y = \frac{\sqrt{9x^4 + x^2}}{5x^2 + 3x + 1}$ is continuous at x = 0, we have:

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sqrt{9x^4 + x^2}}{5x^2 + 3x + 1} = 0.$$
3. Since $y = x$ is continuous at $x = 0$, we have:
$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sqrt{9x^4 + x^2}}{5x^2 + 3x + 1} = 0.$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x = 0.$$

Since all three of these values are the same, the function is continuous at x = 0.

3. Let
$$f(x) = \begin{cases} e^x, & \text{if } x < 0; \\ 9x^2 + x + 1, & \text{if } x \ge 0. \end{cases}$$
. Is f continuous at $x = 0$?

Solution:

1. The function is defined at x = 0 and its value is $f(0) = 9(0)^2 + (0) + 1 = 1$.

2. Since $y = e^x$ is continuous at x = 0, we have:

$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} e^x = e^0 = 1.$$
3. Since $y=x$ is continuous at $x=0$, we have:

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 9x^2 + x + 1 = 1$$

 $\lim_{x\to 0^+}f(x)=\lim_{x\to 0^+}9x^2+x+1=1.$ Since all three of these values are the same, the function is continuous at x=0.

4. Let
$$f(x)=\left\{ \begin{array}{ll} x^2\sin\left(\frac{1}{x}\right)+3 & \text{, if } x\neq 0;\\ 1 & \text{, if } x=0. \end{array} \right.$$
 . Is f continuous at $x=0$?

Solution:

1. The function is defined at x = 0 and its value is f(0) = 1.

2. Now we use the squeeze theorem to find the value of the limit.

Since $-1 \le \sin\left(t\frac{1}{x}\right) \le 1$ for all values of x, we can multiply by x^2 to get $-x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2$ for all values of x. Since $\lim_{x\to 0} -x^2 = 0 = \lim_{x\to 0} x^2$, we conclude that the function between them also approaches

zero. Therefore
$$\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right) = 0$$
, which implies $\lim_{x\to 0} f(x) = \lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right) + 3 = 3$.

Since the value of limit does NOT equal the value of the function, f(x) is NOT continuous at x=0.

5. Let
$$f(x) = \begin{cases} -x + c & \text{, if } x \leq 1; \\ 6 - 2x^2 & \text{, if } x > 1. \end{cases}$$
 Find a value of c so that $f(x)$ is continuous at $x = 1$.

6. Let
$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{, if } x < 3; \\ cx^2 + 10 & \text{, if } x \ge 3. \end{cases}$$
 Find the value of c so that $f(x)$ is continuous at $x = 3$.

7. Let
$$G(x) = \begin{cases} \frac{1}{(x+3)^2} & \text{, if } x \leq -1; \\ 2-x & \text{, if } -1 < x \leq 1; \\ \frac{3}{x+2} & \text{, if } x > 1. \end{cases}$$
 Find all values of x where G is not continuous.

Answers

5. Let $f(x) = \begin{cases} -x + c & \text{, if } x \le 1; \\ 6 - 2x^2 & \text{, if } x > 1. \end{cases}$ Find a value of c so that f(x) is continuous at x = 1.

1. The function is defined at x = 1 and its value is f(1) = -1 + c.

2. Since y = -x + c is continuous at x = 1, we have:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} -x + c = -1 + c$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 6 - 2x^2 = 6 - 2(1)^2 = 4.$$

 $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} -x + c = -1 + c.$ 3. Since $y=6-2x^2$ is continuous at x=1, we have: $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} 6 - 2x^2 = 6 - 2(1)^2 = 4.$ In order to make all three of these the same, we need -1+c=4. Thus, c=5.

6. Let $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{, if } x < 3; \\ cx^2 + 10 & \text{, if } x \ge 3. \end{cases}$ Find the value of c so that f(x) is continuous at x = 3.

Solution:

1. The function is defined at x = 3 and its value is $f(3) = c(3)^2 + 10 = 9c + 10$.

$$2. \lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \frac{x^{2} - 9}{x - 3} = \lim_{x \to 3^{-}} \frac{(x - 3)(x + 3)}{x - 3} = 6.$$

$$\lim_{x \to 3+} f(x) = \lim_{x \to 3+} cx^2 + 10 = 9c + 10$$

3. Since $y=cx^2+10$ is continuous at x=3, we have: $\lim_{x\to 3^+}f(x)=\lim_{x\to 3^+}cx^2+10=9c+10.$ In order to make all three of these the same, we need 9c+10=6. Thus, $c=-\frac{4}{9}$.

7. Let $G(x) = \begin{cases} \frac{1}{(x+3)^2}, & \text{if } x \leq -1; \\ 2-x, & \text{if } -1 < x \leq 1; \\ \frac{3}{x+2}, & \text{if } x > 1. \end{cases}$ Find all values of x where G is not continuous.

Solution: There are four points to immediately consider: x = -3 and x = -2 because they make a denominator zero as well as x = -1 and x = 1 because the function rule changes at these values.

x = -3: Since $y = \frac{1}{(x+3)^2}$ is discontinuous at x = -3 and G(x) uses this rule for x < -1, we see that

x = -2: Even through $y = \frac{3}{x+2}$ is discontinuous at x = -2, the function G(x) only uses the rule $y = \frac{3}{x+2}$ for values where x > 1 and the rule it does use at x = -2 is continuous at that value. So G(x) is continuous at x = -2.

 $\mathbf{x}=-1$: $\lim_{x\to -1^-}G(x)=\frac{1}{(-1+3)^2}=\frac{1}{4}$ and $\lim_{x\to -1^+}G(x)=2-(-1)=3$. Since these are not the same, the function G(x) is NOT continuous at x=-1.

 $\mathbf{x}=1$: $\lim_{x\to 1^-}G(x)=2-(1)=1$ and $\lim_{x\to 1^+}G(x)=\frac{3}{1+3}=1$. Since these ARE the same and they equal the value of the function at x=1, the function G(x) is continuous at x=1.

Therefore, the function G(x) is continuous everywhere except x = -3 and x = -1.