Limits Rules ... Set 2

Definitions of Limits at Large Numbers

	Definition in Words Precise Mathematical Definition		
Large POSITIVE numbers	Let f be a function defined on some interval (a, ∞) . Then $\lim_{x \to \infty} f(x) = L$ means that the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently large in a positive direction.	Let f be a function defined on some interval (a, ∞) . Then $\lim_{x \to \infty} f(x) = L$ if for every $\mathcal{E} > 0$ there is a corresponding number N such that if $x > N$ then $\left f(x) - L \right < \mathcal{E}$	
Large NEGATIVE numbers	Let f be a function defined on some interval $(-\infty,a)$. ∞). Then $\lim_{x\to-\infty} f(x) = L$ means that the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently large in a negative direction.	Let f be a function defined on some interval $(-\infty,a)$. Then $\lim_{x\to -\infty} f(x) = L$ if for every $\mathcal{E} > 0$ there is a corresponding number N such that if $x < N$ then $\left f(x) - L \right < \mathcal{E}$	

	Definition	What this can look like		
Horizontal Asymptote	The line $y = L$ is a horizontal asymptote of the curve $y = f(x)$ if either is true: 1. $\lim_{x \to \infty} f(x) = L$ or 2. $\lim_{x \to -\infty} f(x) = L$	♦	$\stackrel{\uparrow}{\Longleftrightarrow}$	♦
Vertical Asymptote	The line $x = a$ is a vertical asymptote of the curve $y = f(x)$ if <i>at least one</i> of the following is true: 1. $\lim_{x \to a} f(x) = \infty$ 2. $\lim_{x \to a^-} f(x) = \infty$ 3. $\lim_{x \to a^+} f(x) = \infty$ 4. $\lim_{x \to a} f(x) = -\infty$ 5. $\lim_{x \to a^-} f(x) = -\infty$ 6. $\lim_{x \to a^+} f(x) = -\infty$	♦		↑

Theorem

- If r > 0 is a rational number then $\lim_{x \to \infty} \frac{1}{x^r} = 0$
- If r > 0 is a rational number such that x^r is defined for all x then $\lim_{x \to \infty} \frac{1}{x^r} = 0$