Instantaneous Rate of Change ... Facts 1

Instantaneous Rate of Change (Derivative):

- Instantaneous rate of change at x=a is the average rate of change over the interval (a,a)
- Instantaneous rate of change cannot be calculated with Algebra alone because the of the equal x-coordinates.
- The denominator of the fraction in the computation would be $\frac{1}{a-a}$.
- This gives a fraction with 0 in the denominator. This is undefined.

Instantaneous Rate of Change ... Facts 1

Calculus is needed to compute instantaneous rate of change.

Instantaneous rate of change of a function f at x=a: Is the average rate of change of the function f at x=a.

- The instantaneous rate is essentially the average rate of change over the interval (a, a + h).
- To find the instantaneous rate of change, we take the limit as *h* approaches 0.
- The instantaneous rate of change is the average rate of change at a single point, since h is changed to zero and we get the interval

$$(a, a + 0) = (a, a)$$

This is the formula to compute instantaneous rate of change of a function f when x = a.

Instantaneous rate of change of a function f at x = a

Instantaneous rate of change =
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{(a+h)-a} = \lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$

Instantaneous rate of change is a measure of the slope of the line connecting the points: (a, f(a)) and (a + h, f(a + h))

Instantaneous Rate of Change ... Facts 1

We will use the word DERIVATIVE very often this semester.

- The terms instantaneous rate of change and derivative have the same definition and they are interchangeable words.
- The value of a derivative of function f when x=a is just the instantaneous rate of change of the function f at x=a

This is the formula to compute derivative of a function f at x = a.

Derivative of function f at x = a

Derivative =
$$f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{(a+h)-a} = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h}$$

- We use the symbol f'(a) to represent the derivative of function at x = a
- A derivative is a measure of the slope of the line connecting the points: (a, f(a)) and (a + h, f(a + h))