### **Tangents and Normals**

#### **Equation of a Tangent Line**

The derivative at a point x = a, denoted f'(a), is the instantaneous rate of change at that point. Geometrically, f'(a) gives us the slope of the tangent line at the point x = a.



Recall: A **tangent line** is a line that "just touches" a curve at a specific point without intersecting it.

To find the <u>equation of the tangent line</u> we need its slope and a point on the line. Given the function f(x) and the point (a, f(a)) we can find the equation of the tangent line using the slope equation.

$$\mathbf{m} = \frac{f(x) - f(a)}{x - a}$$

Since f'(a) gives us the slope of the tangent line at the point x = a, we have

$$\mathbf{f}'(\mathbf{a}) = \frac{f(x) - f(a)}{x - a}$$

As such, the equation of the tangent line at x = a can be expressed as:

$$f(x) - f(a) = \mathbf{f}'(\mathbf{a})(x - a)$$

#### **Equation of a Normal Line**

The **normal line** is defined as the line that is perpendicular to the tangent line at the point of tangency. Knowing this, we can find the <u>equation of the normal line at x = a by taking the <u>negative inverse of the slope</u> of the tangent line equation.</u>

Thus, if f'(a) is the slope of the tangent line at x = a. The negative inverse is  $\frac{-1}{f'(a)}$ .



As such, the equation of the normal line at x = a can be expressed as:

$$f(x) - f(a) = \frac{-1}{\mathbf{f}'(\mathbf{a})}(x - a)$$

**Example 1:** Find the equation of the tangent and normal lines of the function  $f(x) = \sqrt{2x-1}$  at the point (5, 3).

#### Solution:

#### a) Equation of the Tangent Line.

| Step 1: Find the slope of the function by solving for its first derivative. | $f(x) = \sqrt{2x - 1}$ $f(x) = (2x - 1)^{\frac{1}{2}}$                            |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                                             | $f'(x) = \frac{1}{2}(2x - 1)^{\frac{-1}{2}}(2)$ $f'(x) = \frac{1}{\sqrt{2x - 1}}$ |
| Step 2: Knowing $f'(a)$ , solve for the slope of the tangent at $a = 5$ .   | $f'(5) = \frac{1}{\sqrt{2(5) - 1}}$ $f'(5) = \frac{1}{3}$                         |
| Step 3: Solve for $f(a)$ .                                                  | $f(5) = \sqrt{2(5) - 1}$ $f(5) = 3$                                               |
| Step 4: Substitute found values into the equation of a tangent line.        | $f(x) - f(a) = f'(a)(x - a)$ $f(x) - 3 = \frac{1}{3}(x - 5)$                      |

#### b) Equation of the Normal Line.

| Step 1: Find the slope of the normal line $\frac{-1}{f'(a)}$ . | Since $f'(5) = \frac{1}{3}$ , then $\frac{-1}{f'(a)} = -3$                       |
|----------------------------------------------------------------|----------------------------------------------------------------------------------|
| Step 2: Given the equation of a tangent line, swap slopes.     | $f(x) - f(a) = \frac{-1}{\mathbf{f}'(\mathbf{a})}(x - a)$ $f(x) - 3 = -3(x - 5)$ |

**Example 2:** Find the equation of the tangent and normal lines of the function  $f(x) = (x^2 - 1)^3$  at the point (2, 27).

#### Solution:

#### a) Equation of the Tangent Line.

| Step 1: Find the slope of the function by solving for its first derivative.      | $f(x) = (x^{2} - 1)^{3}$ $f'(x) = 3(x^{2} - 1)^{2}(2x)$ $f'(x) = 6x(x^{2} - 1)^{2}$ |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| <b>Step 2:</b> Knowing $f'(a)$ , solve for the slope of the tangent at $a = 2$ . | $f'(2) = 6(2)((2)^{2} - 1)^{2}$ $f'(2) = 108$                                       |
| Step 3: Solve for $f(a)$ .                                                       | $f(2) = ((2)^2 - 1)^3$ $f(2) = 27$                                                  |
| Step 4: Substitute found values into the equation of a tangent line.             | f(x) - f(a) = f'(a)(x - a)<br>f(x) - 27 = 108(x - 2)                                |

#### b) Equation of the Normal Line.

| Step 1: Find the slope of the normal line $\frac{-1}{f'(a)}$ . | Since $f'(2) = 108$ , then $\frac{-1}{f'(a)} = -\frac{1}{108}$ |
|----------------------------------------------------------------|----------------------------------------------------------------|
| Step 2: Given the equation of a tangent line, swap slopes.     | $f(x) - f(a) = \frac{-1}{\mathbf{f}'(\mathbf{a})}(x - a)$      |
|                                                                | $f(x) - 27 = -\frac{1}{108}(x - 2)$                            |

#### Exercises:

- 1. Find the equation for the normal and tangent lines for f(x) at the specified points.
  - a)  $f(x) = e^x$  at (0,1)
  - b)  $f(x) = 2x^3 3x + 7$  at (1,6)
  - c)  $f(x) = \frac{1}{x^2}$  at (-1,1)
  - d)  $f(x) = x\cos(x)$  at (0,0)
  - e)  $f(x) = xe^x$  at (0, 0)

#### **Answers**

- 1. a) Tangent: y 1 = x, Normal: y 1 = -x
  - b) Tangent: y 6 = 3(x 1), Normal:  $y 6 = -\frac{1}{3}(x 1)$
  - c) Tangent: y 1 = 2(x + 1), Normal:  $y 1 = -\frac{1}{2}(x + 1)$
  - d) Tangent: y = x, Normal: y = -x
  - e) Tangent: y = x, Normal: y = -x