Lesson 2.6: Differentiability:

A function is differentiable at a point if it has a derivative there. In other words: The function f is differentiable at x if

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
exists.

Thus, the graph of f has a non-vertical tangent line at (x, f(x)). The value of the limit and the slope of the tangent line are the derivative of f at x_0 .

A function can fail to be differentiable at point if:

1. The function is not continuous at the point.

How can you make a tangent line here?

2. The graph has a sharp corner at the point.

3. The graph has a vertical line at the point.

Example 1:

$$H(x) = \left\{ \begin{array}{ll} 0 & x < 0 \\ 1 & x \ge 0 \end{array} \right.$$

H is not continuous at 0, so it is not differentiable at 0.

Theorem 2.1: A differentiable function is continuous:

If f(x) is differentiable at x = a, then f(x) is also continuous at x = a.

Example 2:

$$f(x) = \mid x \mid = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

At x = 0, there is a corner at (0,0). Picture is different to the left and right of (0,0). Suggests we try left- and right-hand limits.

$$\lim_{h\to 0_+} \frac{f(h)-f(0)}{h} = \lim_{h\to 0_+} \frac{h-0}{h}$$
 cancellation of h okay, since $h\neq 0$ for limit at 0

$$= \lim_{h\to 0_+} 1$$

$$= 1$$

But

$$\lim_{h\to 0_-}\frac{f(h)-f(0)}{h}=\lim_{h\to 0_-}\frac{-h-0}{h}$$
 cancellation of h okay, since $h\neq 0$ for limit at 0
$$=\lim_{h\to 0_-}-1$$

$$=-1$$

Since the left- and right-hand limits do not agree,

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h}$$

Does not exits, and so |x| is not differentiable at x = 0.

Example 3:

$$g(x) = x^{1/3}$$

The graph is smooth at x = 0, but does appear to have a vertical tangent.

$$\lim_{h \to 0} \frac{(0+h)^{1/3} - 0^{1/3}}{h} = \lim_{h \to 0} \frac{(h)^{1/3}}{h} = \lim_{h \to 0} \frac{1}{h^{2/3}}$$

As $h \to 0$, the denominator becomes small, so the fraction grows without bound. Hence g is not differentiable at x = 0.

Example 4:

$$g(x) = \begin{cases} x+1 & x \le 1\\ 3x-1 & x > 1 \end{cases}$$