Differentiability and Continuity

A graph of a function is shown below. Write down its equation on line #1.

- 1. y = _____
- 2. *y* = _____
- 3. *y* = _____

<u>Differentiability:</u>		
The derivative exists fo	r each point in the domain. The	e graph must be a smooth line
or curve for the derivative to ex	xist. In other words, the graph l	ooks like a line if you zoom in.
The derivative <i>fails to exist</i> wh	ere the function has a	
1.	2.	3.
(
\		

Identify points where the function below is not continuous and/or not differentiable.

True or False	True or False
Differentiability implies continuity.	Continuity implies differentiability.

Identify any x-values of the function that are not continuous and/or not differentiable.

1.

x-values where the function is not continuous.

x-values where the function is continuous, but not differentiable.

Identify any x-values of the function that are not continuous and/or not differentiable.

2.

x-values where the function is not continuous.

x-values where the function is continuous, but not differentiable.

Identify any x-values of the function that are not continuous and/or not differentiable.

3.

x-values where the function is not continuous.

x-values where the function is continuous, but not differentiable.

- 4. f is continuous for $a \le x \le b$ but not differentiable for some c such that a < c < b. Which of the following could be true?
 - (A) x = c is a vertical asymptote of the graph of f.
- (B) $\lim_{x\to c} f(x) \neq f(c)$ (C) The graph of f has a cusp at
- (D) f(c) is undefined.

(E) None of the above

- 5. If g is differentiable at x = c, which of the following must be true?
 - I. g is continuous at x = c.
 - II. $\lim_{x \to c} g(x)$ exists.
 - III. $\lim_{x \to c} \frac{g(x) g(c)}{x c}$ exists.
 - (A) I only

(B) II only

(C) III only

- (D) I and II only
- (E) I, II, and III

6. Let n be the function given by $h(x) = x - 4 $. Which of the following statements about			e'	
	I.	h is continuous at $x = 4$.		
	II.	h is differentiable at $x = 4$.		
III.		h has an absolute minimum at $x = 4$.		
	(A) I on	y (B) II only (C) III only		

 $(D) \quad I \ and \ III \ only \\ (E) \quad II \ and \ III \ only$

7. If f is a differentiable function such that f(2) = 5 and f'(2) = 7, which of the following statements could be

(A)
$$\lim_{x \to 2} f(x) = 5$$

(A)
$$\lim_{x \to 2} f(x) = 5$$
 (B) $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x)$ (C) $\lim_{x \to 2} \frac{f(x) - 5}{x - 2} = 7$

(C)
$$\lim_{x \to 2} \frac{f(x) - 5}{x - 2} = 7$$

(D)
$$\lim_{h \to 0} \frac{f(2+h)-5}{h} = 7$$
 (E) $\lim_{h \to 0} f'(x) = 7$

(E)
$$\lim_{h \to 0} f'(x) = 7$$