Implicit Differentiation ... Set 2

Implicit Differentiation

The goal of this section is to learn how to compute the derivative when there is not an explicit equation available for the original function. Sometimes a function is defined *implicitly* as part of an equation. For example, suppose y = f(x) is defined by the equation

$$xy^3 + e^{xy} = 1.$$

There is no way to isolate y in this equation. Nevertheless, there is a curve of points in the xy-plane that satisfy this equation (note that (0,0) is one such point). Implicit differentiation can be used to find the derivative (slope of the tangent line to the curve) at a given point.

Example 1: Suppose that $x^2 + y^2 = 1$ (the unit circle). Use implicit differentiation to find a formula for $\frac{dy}{dx}$.

Answer: First replace y by y(x), treating y as a function of x. This gives $x^2 + (y(x))^2 = 1$. Now differentiate both sides of the equation with respect to x. Using the chain rule on the second term, with y(x) as the "inside," we find

$$2x + 2(y(x))^1 \cdot \frac{dy}{dx} = 0.$$

Now solve for $\frac{dy}{dx}$ (think of it as a variable that you want to isolate). It is easier to replace y(x) by y when solving. We have

$$2x + 2y \cdot \frac{dy}{dx} \ = \ 0 \quad \Longrightarrow \quad 2y \frac{dy}{dx} = -2x \quad \Longrightarrow \quad \frac{dy}{dx} \ = \ \frac{-2x}{2y} \ = \ -\frac{x}{y} \, .$$

Note that this is the same answer we obtained in class by first solving for y and then differentiating explicitly. The formula $\frac{dy}{dx} = -\frac{x}{y}$ gives us the slope of the tangent line to the unit circle at the point (x,y). For example, at the points $(0,\pm 1)$, we find m=0 (horizontal tangent lines), while at the point $(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$ we have m=-1. These make sense if we draw the unit circle.

Exercise 1: If $xy + y^4 + 3 = 0$, use implicit differentiation to find $\frac{dy}{dx}$.

Exercise 2: Suppose that $\sin(y) + e = e^x + xy^2$. Find $\frac{dy}{dx}$ and use it to find the equation of the tangent line at the point (1,0).

Implicit Differentiation ... Set 2

Derivatives of Inverse Trig Functions

Implicit differentiation can be used to determine the derivatives of some key inverse functions. For example, consider the inverse sine function $y = \sin^{-1} x$. Recall that this function outputs the angle y whose sine value is x. Thus, we have $\sin^{-1}(1) = \pi/2$ because $\sin(\pi/2) = 1$.

Here is how we use implicit differentiation to compute $\frac{dy}{dx}$. First note that since $y = \sin^{-1} x$, we have $\sin(y) = x$ by definition of the inverse sine function. Then

$$\sin(y) = x \implies \cos(y) \cdot \frac{dy}{dx} = 1$$

$$\implies \frac{dy}{dx} = \frac{1}{\cos(y)} = \frac{1}{\sqrt{1 - x^2}}.$$

Here the final step follows from the fundamental trig identity and the fact that $\sin y = x$, as

$$\cos^2 y + \sin^2 y = 1 \implies \cos^2 y + x^2 = 1 \implies \cos y = \sqrt{1 - x^2}$$
.

We choose the positive square root because $y = \sin^{-1} x$ is restricted to the interval $-\pi/2 \le y \le \pi/2$. Since $\cos y$ is positive in the first and fourth quadrants, we are justified in choosing the positive square root. The formula for the derivative of $y = \cos^{-1} x$ is found in a similar fashion. Here are two new formulas to add to the list:

$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}} \quad \text{and} \quad \frac{d}{dx}\left(\cos^{-1}x\right) = -\frac{1}{\sqrt{1-x^2}}.$$

Exercise 3: Suppose that $f(x) = \sin^{-1}(\sqrt{x})$. Use the formula above to compute and simplify f'(x).

Exercise 4: Find the formula for $\frac{d}{dx}(\tan^{-1}x)$ using the trig identity $\tan^2 y + 1 = \sec^2 y$.

Exercise 5: Use the formula from the previous exercise to find $\frac{d}{dx} (\tan^{-1}(e^x))$.