First Derivative Test ... Set 3 ## Section 4.5: Absolute Maxima and Minima (Absolute Extrema) **Definition:** Let c is a value in the domain of a function f. If $f(c) \ge f(x)$ for all x in the domain of f then f(c) called the **absolute maximum** of f. If $f(c) \le f(x)$ for all x in the domain of f then f(c) called the **absolute minimum** of f. *Note:* Keep in mind that c is x-value, and f(c) is y-value at x = c. Procedure: Finding absolute extrema on a closed interval [a, b] - 1. Check if f continuous over the [a, b]. - 2. Find the critical numbers on the interval (a, b). - 3. Find f(a), f(b), and evaluate f at all critical numbers found in step 2. - 4. The absolute maximum is the largest value found in step 3. - 5. The absolute minimum is the smallest value found in step 3. Example: Find the absolute maximum and absolute minimum of $$f(x) = x^3 + 3x^2 - 9x - 7$$ on the interval [-4, 2] - 1. f(x) is continuous for all values of x since it is a polynomial function. So, it is continuous on [-4, 2]. - 2. $f'(x) = 3x^2 + 6x 9 = 3(x 1)(x + 3) = 0$ $$x-1=0$$ or $x+3=0$, so $x=1$ or $x=-3$ are critical numbers. 3. | x | -4 | -3 | 1 | 2 | |------|----|----|-----|----| | f(x) | 13 | 20 | -12 | -5 | - 4. The absolute maximum value is 20 - 5. The absolute minimum value is -12 ## Second Derivative Test for Absolute Extrema on an Interval (If there is exactly ONE critical number). Let f be continuous on interval (a, b) with only one critical number c in the interval. If f'(c) = 0 and f''(c) > 0, then f(c) is the absolute minimum of f on the open interval (a, b). If f'(c) = 0 and f''(c) < 0, then f(c) is the absolute maximum of f on the open interval (a, b). ## First Derivative Test ... Set 3 *Note:* Observe that in the first case, f''(c) is positive, thus the function is concave up \circ which gives us minimum value, and in the second case f''(c) is negative, thus the function is concave down \circ which gives us maximum value. **Example**: Find the absolute extrema of the function on $(0, \infty)$. $$f(x) = x + \frac{4}{x}$$ $$f'(x) = 1 - \frac{4}{x^2} = \frac{x^2}{x^2} - \frac{4}{x^2} = \frac{x^2 - 4}{x^2} = \frac{(x - 2)(x + 2)}{x^2} = 0$$ x-2=0 or x+2=0. So, critical numbers are x=2 or x=-2. However, x=-2 is not in the interval $(0,\infty)$ the only critical number is x=2. $$f''(x) = \frac{8}{x^3}$$ $f''(2) = \frac{8}{2^3} = 1 > 0$. So, since the second derivative is positive, the function is concave up, and the absolute minimum is f(2) = 4. $$f(2) = 2 + \frac{4}{2} = 4$$