The Hyperbolic Functions

Introduction

The hyperbolic functions $\sinh x$, $\cosh x$, $\tanh x$ etc are certain combinations of the exponential functions e^x and e^{-x} . The notation implies a close relationship between these functions and the trigonometric functions $\sin x$, $\cos x$, $\tan x$ etc. The close relationship is algebraic rather than geometrical. For example, the functions $\cosh x$ and $\sinh x$ satisfy the relation

$$\cosh^2 x - \sinh^2 x \equiv 1$$

which is very similar to the trigonometric identity $\cos^2 x + \sin^2 x \equiv 1$. (In fact every trigonometric identity has an equivalent hyperbolic function identity.)

The hyperbolic functions are not introduced because they are a mathematical nicety. They arise naturally and sufficiently often to warrant sustained study. For example, the shape of a chain hanging under gravity is well described by cosh and the deformation of uniform beams can be expressed in terms of tanh.

Prerequisites

Before starting this Section you should ...

- have a good knowledge of the exponential function
- have knowledge of odd and even functions
- have familiarity with the definitions of tan, sec, cosec, cot and of trigonometric identities

Learning Outcomes

On completion you should be able to ...

- explain how hyperbolic functions are defined in terms of exponential functions
- obtain and use hyperbolic function identities
- manipulate expressions involving hyperbolic functions

1. Even and odd functions

Constructing even and odd functions

A given function f(x) can always be split into two parts, one of which is even and one of which is odd. To do this write f(x) as $\frac{1}{2}[f(x)+f(x)]$ and then simply add and subtract $\frac{1}{2}f(-x)$ to this to give

$$f(x) = \frac{1}{2}[f(x) + f(-x)] + \frac{1}{2}[f(x) - f(-x)]$$

The term $\frac{1}{2}[f(x)+f(-x)]$ is **even** because when x is replaced by -x we have $\frac{1}{2}[f(-x)+f(x)]$ which is the same as the original. However, the term $\frac{1}{2}[f(x)-f(-x)]$ is **odd** since, on replacing xby -x we have $\frac{1}{2}[f(-x)-f(x)]=-\frac{1}{2}[f(x)-f(-x)]$ which is the negative of the original.

Example 2 Separate $x^3 + 2^x$ into odd and even parts.

Solution

$$f(x) = x^3 + 2^x$$

$$f(-x) = (-x)^3 + 2^{-x} = -x^3 + 2^{-x}$$

Even part:

$$\frac{1}{2}(f(x) + f(-x)) = \frac{1}{2}(x^3 + 2^x - x^3 + 2^{-x}) = \frac{1}{2}(2^x + 2^{-x})$$

$$\frac{1}{2}(f(x) - f(-x)) = \frac{1}{2}(x^3 + 2^x + x^3 - 2^{-x}) = \frac{1}{2}(2x^3 + 2^x - 2^{-x})$$

Separate the function $x^2 - 3^x$ into odd and even parts.

First, define f(x) and find f(-x):

Your solution

$$f(x) =$$

$$f(-x) =$$

Answer

$$f(x) = x^2 - 3^x$$
, $f(-x) = x^2 - 3^{-x}$

Now construct $\frac{1}{2}[f(x)+f(-x)], \quad \frac{1}{2}[f(x)-f(-x)]$:

$$\frac{1}{2}[f(x) + f(-x)] =$$

$$\frac{1}{2}[f(x) - f(-x)] =$$

Answer

$$\begin{split} \frac{1}{2}[f(x)+f(-x)] &= \frac{1}{2}(x^2-3^x+x^2-3^{-x}) \\ &= x^2-\frac{1}{2}(3^x+3^{-x}). \text{ This is the even part of } f(x). \\ \frac{1}{2}[f(x)-f(-x)] &= \frac{1}{2}(x^2-3^x-x^2+3^{-x}) \\ &= \frac{1}{2}(3^{-x}-3^x). \text{ This is the odd part of } f(x). \end{split}$$

The odd and even parts of the exponential function

Using the approach outlined above we see that the even part of e^x is

$$\frac{1}{2}(\mathsf{e}^x + \mathsf{e}^{-x})$$

and the odd part of e^x is

$$\frac{1}{2}(\mathsf{e}^x - \mathsf{e}^{-x})$$

We give these new functions special names: $\cosh x$ (pronounced 'cosh' x) and $\sinh x$ (pronounced 'shine' x).

Key Point 3

Hyperbolic Functions

$$\cosh x \equiv \frac{1}{2} (\mathsf{e}^x + \mathsf{e}^{-x})$$

$$\sinh x \equiv \frac{1}{2} (\mathrm{e}^x - \mathrm{e}^{-x})$$

These two functions, when added and subtracted, give

$$\cosh x + \sinh x \equiv e^x$$

and

$$\cosh x - \sinh x \equiv \mathrm{e}^{-x}$$

The graphs of $\cosh x$ and $\sinh x$ are shown in Figure 4.

Figure 4: $\sinh x$ and $\cosh x$

Note that $\cosh x > 0$ for all values of x and that $\sinh x$ is zero only when x = 0.

2. Hyperbolic identities

The hyperbolic functions $\cosh x$, $\sinh x$ satisfy similar (but not exactly equivalent) identities to those satisfied by $\cos x$, $\sin x$. We note first some basic notation similar to that employed with trigonometric functions:

$$\cosh^n x$$
 means $(\cosh x)^n$ $\sinh^n x$ means $(\sinh x)^n$ $n \neq -1$

In the special case that n=-1 we **do not** use $\cosh^{-1}x$ and $\sinh^{-1}x$ to mean $\frac{1}{\cosh x}$ and $\frac{1}{\sinh x}$ respectively. The notation $\cosh^{-1}x$ and $\sinh^{-1}x$ is reserved for the **inverse functions** of $\cosh x$ and $\sinh x$ respectively.

Show that $\cosh^2 x - \sinh^2 x \equiv 1$ for all x.

(a) First, express $\cosh^2 x$ in terms of the exponential functions e^x , e^{-x} :

$$\cosh^2 x \equiv \left[\frac{1}{2}(e^x + e^{-x})\right]^2 \equiv$$

$$\frac{1}{4}(\mathsf{e}^x + \mathsf{e}^{-x})^2 \equiv \frac{1}{4}[(\mathsf{e}^x)^2 + 2\mathsf{e}^x\mathsf{e}^{-x} + (\mathsf{e}^{-x})^2] \equiv \frac{1}{4}[\mathsf{e}^{2x} + 2\mathsf{e}^{x-x} + \mathsf{e}^{-2x}] \equiv \frac{1}{4}[\mathsf{e}^{2x} + 2 + \mathsf{e}^{-2x}]$$

(b) Similarly, express $\sinh^2 x$ in terms of e^x and e^{-x} :

Your solution

$$\sinh^2 x \equiv \left[\frac{1}{2}(\mathrm{e}^x - \mathrm{e}^{-x})\right]^2 \equiv$$

$$\frac{1}{4}(e^x - e^{-x})^2 \equiv \frac{1}{4}[(e^x)^2 - 2e^x e^{-x} + (e^{-x})^2] \equiv \frac{1}{4}[e^{2x} - 2e^{x-x} + e^{-2x}] \equiv \frac{1}{4}[e^{2x} - 2 + e^{-2x}]$$

(c) Finally determine $\cosh^2 x - \sinh^2 x$ using the results from (a) and (b):

Your solution

$$\cosh^2 x - \sinh^2 x \equiv$$

$$\cosh^2 x - \sinh^2 x \equiv \frac{1}{4} [\mathrm{e}^{2x} + 2 + \mathrm{e}^{-2x}] - \frac{1}{4} [\mathrm{e}^{2x} - 2 + \mathrm{e}^{-2x}] \equiv 1$$

As an alternative to the calculation in this Task we could, instead, use the relations

$$e^x \equiv \cosh x + \sinh x$$

$$e^{-x} \equiv \cosh x - \sinh x$$

and remembering the algebraic identity $(a+b)(a-b) \equiv a^2 - b^2$, we see that

$$(\cosh x + \sinh x)(\cosh x - \sinh x) \equiv e^x e^{-x} \equiv 1$$
 that is $\cosh^2 x - \sinh^2 x \equiv 1$

$$\cosh^2 x - \sinh^2 x \equiv 1$$

6

Key Point 4

The fundamental identity relating hyperbolic functions is:

$$\cosh^2 x - \sinh^2 x \equiv 1$$

This is the hyperbolic function equivalent of the trigonometric identity: $\cos^2 x + \sin^2 x \equiv 1$

Show that $\cosh(x+y) \equiv \cosh x \cosh y + \sinh x \sinh y$.

First, express $\cosh x \cosh y$ in terms of exponentials:

Your solution

$$\cosh x \cosh y \equiv \left(\frac{\mathsf{e}^x + \mathsf{e}^{-x}}{2}\right) \left(\frac{\mathsf{e}^y + \mathsf{e}^{-y}}{2}\right) \equiv$$

Answer

$$\left(\frac{e^x + e^{-x}}{2}\right) \left(\frac{e^y + e^{-y}}{2}\right) \equiv \frac{1}{4} [e^x e^y + e^{-x} e^y + e^x e^{-y} + e^{-x} e^{-y}] \equiv \frac{1}{4} (e^{x+y} + e^{-x+y} + e^{x-y} + e^{-x-y})$$

Now express $\sinh x \sinh y$ in terms of exponentials:

Your solution

$$\left(\frac{\mathsf{e}^x-\mathsf{e}^{-x}}{2}\right)\left(\frac{\mathsf{e}^y-\mathsf{e}^{-y}}{2}\right)\equiv$$

Answer

$$\left(\frac{{\rm e}^x-{\rm e}^{-x}}{2}\right)\left(\frac{{\rm e}^y-{\rm e}^{-y}}{2}\right)\equiv\frac{1}{4}({\rm e}^{x+y}-{\rm e}^{-x+y}-{\rm e}^{x-y}+{\rm e}^{-x-y})$$

Now express $\cosh x \cosh y + \sinh x \sinh y$ in terms of a hyperbolic function:

Your solution

$$\cosh x \cosh y + \sinh x \sinh y =$$

Answer

 $\cosh x \cosh y + \sinh x \sinh y \equiv \frac{1}{2} (e^{x+y} + e^{-(x+y)})$ which we recognise as $\cosh(x+y)$

Other hyperbolic function identities can be found in a similar way. The most commonly used are listed in the following Key Point.

Key Point 5

Hyperbolic Identities

- $\cosh^2 \sinh^2 \equiv 1$
- $\cosh(x+y) \equiv \cosh x \cosh y + \sinh x \sinh y$
- $\sinh(x+y) \equiv \sinh x \cosh y + \cosh x \sinh y$
- $\sinh 2x \equiv 2 \sinh x \cosh y$
- $\cosh 2x \equiv \cosh^2 x + \sinh^2 x$ or $\cosh 2x \equiv 2\cosh^2 1$ or $\cosh 2x \equiv 1 + 2\sinh^2 x$

3. Related hyperbolic functions

Given the trigonometric functions $\cos x$, $\sin x$ related functions can be defined; $\tan x$, $\sec x$, $\csc x$ through the relations:

$$\tan x \equiv \frac{\sin x}{\cos x}$$

$$\sec x \equiv \frac{1}{\cos x}$$

$$\sec x \equiv \frac{1}{\cos x}$$
 $\csc x \equiv \frac{1}{\sin x}$ $\cot x \equiv \frac{\cos x}{\sin x}$

$$\cot x \equiv \frac{\cos x}{\sin x}$$

In an analogous way, given $\cosh x$ and $\sinh x$ we can introduce hyperbolic functions $\tanh x$, $\operatorname{sec} h x$, $\operatorname{cosech} x$ and $\operatorname{coth} x$. These functions are defined in the following Key Point:

Key Point 6

Further Hyperbolic Functions

$$\tanh x \equiv \frac{\sinh x}{\cosh x}$$

$$\operatorname{sech} x \equiv \frac{1}{\cosh x}$$

$$\operatorname{cosech} x \equiv \frac{1}{\sinh x}$$

$$\coth x \equiv \frac{\cosh x}{\sinh x}$$

Use the identity $\cosh^2 x - \sinh^2 x \equiv 1$:

Your solution

Answer

Dividing both sides by $\cosh^2 x$ gives

$$1 - \frac{\sinh^2 x}{\cosh^2 x} \equiv \frac{1}{\cosh^2 x}$$
 implying (see Key Point 6)
$$1 - \tanh^2 x \equiv \operatorname{sech}^2 x$$

Exercises

- 1. Express
 - (a) $2 \sinh x + 3 \cosh x$ in terms of e^x and e^{-x} .
 - (b) $2\sinh 4x 7\cosh 4x$ in terms of e^{4x} and e^{-4x} .
- 2. Express
 - (a) $2e^x e^{-x}$ in terms of $\sinh x$ and $\cosh x$.
 - (b) $\frac{7e^x}{(e^x e^{-x})}$ in terms of $\sinh x$ and $\cosh x$, and then in terms of $\coth x$.
 - (c) $4e^{-3x} 3e^{3x}$ in terms of $\sinh 3x$ and $\cosh 3x$.
- 3. Using only the \cosh and \sinh keys on your calculator (or e^x key) find the values of
 - (a) tanh 0.35, (b) cosech 2, (c) sech 0.6.

Answers

1. (a)
$$\frac{5}{2}e^x - \frac{1}{2}e^{-x}$$
 (b) $-\frac{5}{2}e^{4x} - \frac{9}{2}e^{-4x}$

- 2. (a) $\cosh x + 3 \sinh x$, (b) $\frac{7(\cosh x + \sinh x)}{2 \sinh x}$, $\frac{7}{2}(\coth x + 1)$ (c) $\cosh 3x 7 \sinh 3x$
- 3. (a) 0.3364, (b) 0.2757 (c) 0.8436