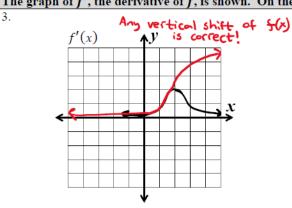
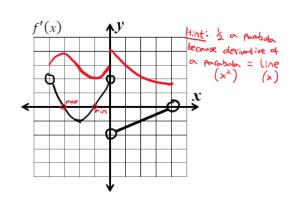
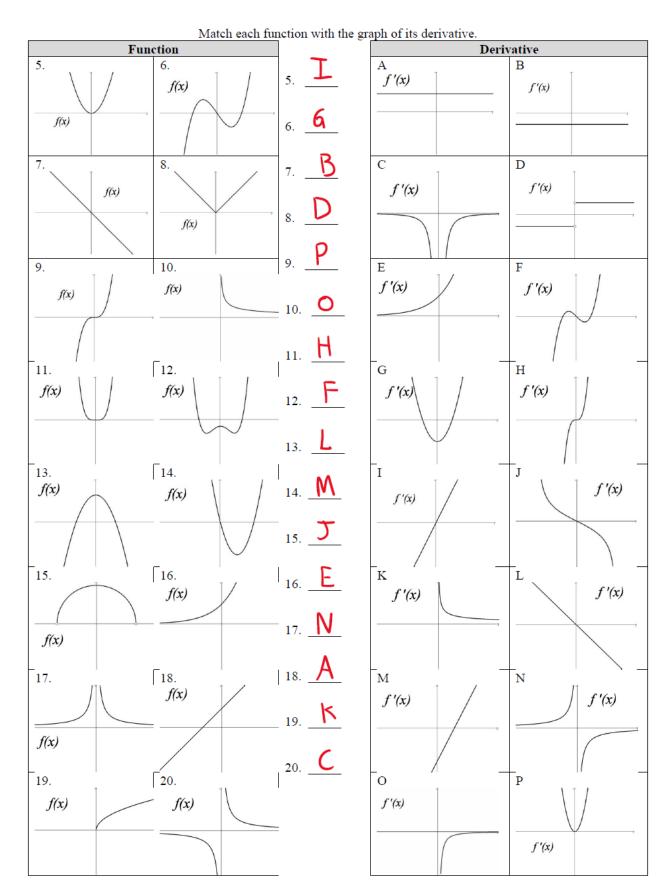
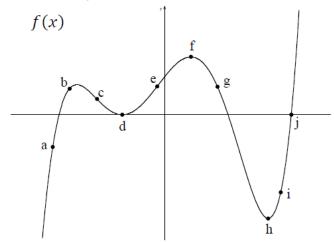
Sketching Graphs of Derivatives Calculus The graph of a function f is shown. On the same coordinate plane, sketch a graph of f', the derivative of f. 1. The graph of f', the derivative of f, is shown. On the same coordinate plane, sketch a possible graph of f.





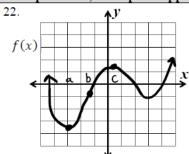


21. Using the figure below, complete the chart by indicating whether each value is positive (+), negative (-), or zero (0) at the indicated points. For these problems, if the point appears to be a max or min, assume it is. If it appears to be a point of inflection, assume it is.



x	а	b	c	d	e	f	g	h	i	j
f(x)	(+	+	0	+	+	+	1	_	0
f'(x)	+	+	_	0	+	0	_	0	+	+
f''(x)	-)	0	+	0	_)	+	+	+

Place the values of f(x), f'(x), and f''(x) in increasing order for each point on the graph of f(x). For these problems, if the point appears to be a max, min, or point of inflection assume it is.

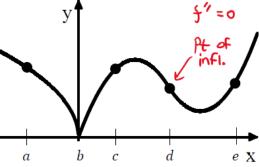


Sketching Graphs of Derivatives

Test Prep

23. The graph of the function f is shown in the figure to the right. For which of the following values of x is f'(x) negative and decreasing.

- (B) b
- (C) c
- (D) d
- (E) e



24. Let f be a function that is continuous on the closed interval [0, 4]. The function f and its derivatives have the properties indicated in the table below.

x	0	0 < <i>x</i> < 1	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4	4
f(x)	1	Pos.	0	Neg.	-2	Neg.	0	Neg.	-1
f'(x)	0	Neg.	-20	Neg.	0	Pos.	DNE	Neg.	0
f"(x)	0	Neg.	0	Pos.	0	Pos.	DNE	Pos.	0

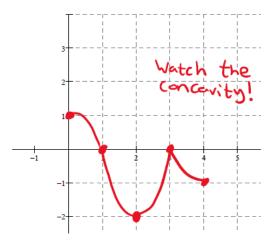
(a) Find the x-coordinate of each point at which f attains a maximum value or a minimum value.

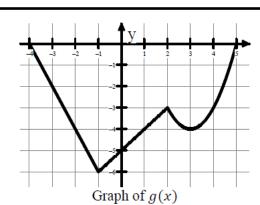
max at x=0 and x=3Min at x=2 and x=4

(b) Find the x-coordinate of each point of inflection on the graph of f.

X=1

(c) In the xy-plane provided sketch the graph of a function with all the above characteristics of f.





- 25. The continuous function g is defined on the closed interval [-4, 5]. The graph of g consists of two line segments and a parabola. Let f be a function such that f'(x) = g(x).
 - a. Fill in the missing entries in the table below to describe the behavior of g' and g". Indicate Positive, Negative, or 0. Give reasons for your answers.

- · · · · · · · · · · · · · · · · · · ·	or orreredsons for	Jour director		
х	-4 < x < -1	-1 < x < 2	2 < x < 3	3 < <i>x</i> < 5
g(x)	Negative	Negative	Negative	Negative
g'(x)	Negative	Positive	Negative	Positive
g''(x)	0	0	Positive	Positive

g'(x) is negative for -4 < x < -1 and 2 < x < 3 because g is decreasing there.

g'(x) is positive for -1 < x < 2 and 3 < x < 5 because g is increasing there.

g''(x) = 0 for -4 < x < -1 and -1 < x < 2 the graph of g is linear there.

g''(x) is positive for 2 < x < 3 and 3 < x < 5 because the graph of g is concave up there.

b. There is no value of x in the open interval (0, 3) at which $g'(x) = \frac{g(3) - g(0)}{3 - 0}$. Explain why this does not violate the Mean Value Theorem.

The Mean Value Theorem can only be applied if g is differentiable on the interval. At x=2, there is a sharp corner and g is not differentiable.

Therefore it cannot be applied on the interval 0 < x < 3.

c. Find all values x in the open interval (-4, 5) at which the graph of f has a point of inflection. Explain your reasoning.

The graph of f has a point of inflection at x=-1, x=2, and x=3. f'(x)=g(x) changes from increasing to decreasing at x=2, and f'(x)=g(x) changes from decreasing to increasing at x=-1 and x=3.

d. At what value of x does f attain its absolute minimum on the closed interval [-4, 5]? Give a reason for your answer.

Because f'(x) = g(x) < 0 on the interval (-4,5), f is decreasing on the interval (-4,5). Therefore, the absolute minimum value of f on the closed interval [-4,5] occurs at the right endpoint x = 5.

- 25. The continuous function g is defined on the closed interval [-4, 5]. The graph of g consists of two line segments and a parabola. Let f be a function such that f'(x) = g(x).
 - a. Fill in the missing entries in the table below to describe the behavior of g' and g". Indicate Positive, Negative, or 0. Give reasons for your answers.

х	-4 < x < -1	-1 < x < 2	2 < x < 3	3 < x < 5
g(x)	Negative	Negative	Negative	Negative
g'(x)	Negative	Positive	Negative	Positive
g''(x)	0	0	Positive	Positive

```
g'(x) is negative for -4 < x < -1 and 2 < x < 3 because g is decreasing there.
```

g'(x) is positive for -1 < x < 2 and 3 < x < 5 because g is increasing there.

g''(x) = 0 for -4 < x < -1 and -1 < x < 2 the graph of g is linear there.

g''(x) is positive for 2 < x < 3 and 3 < x < 5 because the graph of g is concave up there.

b. There is no value of x in the open interval (0,3) at which $g'(x) = \frac{g(3) - g(0)}{3 - 0}$. Explain why this does not violate the Mean Value Theorem.

The Mean Value Theorem can only be applied if g is differentiable on the interval. At x=2, there is a sharp corner and g is not differentiable. Therefore it cannot be applied on the interval 0 < x < 3.

c. Find all values x in the open interval (-4,5) at which the graph of f has a point of inflection. Explain your reasoning.

The graph of f has a point of inflection at x=-1, x=2, and x=3. f'(x)=g(x) changes from increasing to decreasing at x=2, and f'(x)=g(x) changes from decreasing to increasing at x=-1 and x=3.

d. At what value of x does f attain its absolute minimum on the closed interval [-4, 5]? Give a reason for your answer.

Because f'(x) = g(x) < 0 on the interval (-4,5), f is decreasing on the interval (-4,5). Therefore, the absolute minimum value of f on the closed interval [-4,5] occurs at the right endpoint x = 5.