Derivative Graphs ... Set 2

Sketching Graphs of Derivatives m
Calculus

| The graph of a function f is shown. On the same coordinate plane, sketch a graph of f', the derivative of f. |
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The graph of f', the derivative of f, is shown. On the same coordinate plane, sketch a possible graph of f. |
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Derivative Graphs ... Set 2

Match each function with the graph of its derivative.
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21. Using the figure below. complete the chart by indicating whether each value is positive (+). negative (-). or

zero (0) at the indicated points. For these problems. if the point appears to be a max or min. assume it is. If it
appears to be a point of inflection. assume it is.
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Place the values of f(x), f'(x). and f'(x) in increasing order for each point on the graph of f(x). For
these problems, if the point appears to be a max, min, or point of inflection assume it is.
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Test Prep

Sketching Graphs of Derivatives

23. The graph of the function f is shown in the figure to the right. For which of the following values of x is f'(x)
negative and decreasing.
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24. Let f be a function that is continuous on the closed interval [0, 4]. The function f and its derivatives have the
properties indicated in the table below.

x 0 0<x<1| 1 l<x<2 2 2<x=<3 3 3<x<4 4
f(x) 1 Pos. 0 Neg. -2 Neg 0 Neg -1
i) 0 Neg. -20 Neg. 0 Pos. DNE Neg. 0
" (x) 0 Neg. 0 Pos. 0 Pos. DNE Pos 0

(a) Find the x-coordinate of each point at which £ attains a
maximum value or a minimum value.

Moax o+ X =0 end X=3
M ok X= . andk x:b\

(b) Find the x-coordinate of each point of inflection on the

graph of f.
-1
X=

(¢) In the xy-plane provided sketch the graph of a function
with all the above characteristics of f.

Graph of g(x)



25. The continuous function g is defined on the closed interval [—4,5]. The graph of g consists of two line
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segments and a parabola. Let f be a function such that f'(x) = g(x).

a. Fill in the missing entries in the table below to describe the behavior of g" and g’’. Indicate Positive.

Negative, or 0. Give reasons for your answers.

x —4 <x< -1 —1l<x<2 2<x<3 3<x<5
g(x) Negative Negative Negative Negative
g'(x) Negative Positive Negative Positive
g’ (x) 0 0 Positive Positive
g'(x) is negative for —4 < x < —1 and 2 < x < 3 because g is decreasing there.
g'(x) is positive for —1 < x < 2 and 3 < x < 5 because g is increasing there.
g"'(x) =0for —4 < x < —1 and —1 < x < 2 the graph of g is linear there.
g'' (x) is positive for 2 < x < 3 and 3 < x < 5 because the graph of g is concave up there.
b. There is no value of x in the open interval (0, 3) at which g'(x) = @. Explain why this does not

C.

violate the Mean Value Theorem.

The Mean Value Theorem can only be applied if g is differentiable on the interval. At x = 2, there
is a sharp corner and g is not differentiable.

Therefore it cannot be applied on the interval 0 < x < 3.

Find all values x in the open interval (—4,5) at which the graph of f has a point of inflection. Explain
your reasoning.

The graph of f has a point of inflection at x = —1,x = 2, and x = 3.
f'(x) = g(x) changes from increasing to decreasing at x = 2. and f'(x) = g(x) changes from
decreasing to increasing at x = —1 and x = 3.

d. At what value of x does [ attain its absolute minimum on the closed interval [—4,5]? Give a reason for

your answer.

Because f'(x) = g(x) < 0 on the interval (—4,5), f is decreasing on the interval (—4,5).
Therefore, the absolute minimum value of f on the closed interval [—4, 5] occurs at the right
endpoint x = 5.



25.

Derivative Graphs ... Set 2

segments and a parabola. Let f be a function such that f'(x) = g(x).

a. Fill in the missing entries in the table below to describe the behavior of g’ and g"'. Indicate Positive.

Negative, or 0. Give reasons for your answers.

The continuous function g is defined on the closed interval [—4,5]. The graph of g consists of two line

x —4<x<-—-1 —l<x<2 2<x<3 3<x<5
g(x) Negative Negative Negative Negative
g'(x) Negative Positive Negative Positive
g’ (x) 0 0 Positive Positive
"(x) is negative for —4 < X << —1 and 2 < x < 3 because g is decreasing there.
"(x) is positive for —1 < x < 2 and 3 < x < 5 because g is increasing there.
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(x) =0for —4 < x < —1 and —1 < x < 2 the graph of g is linear there.
(

X) is positive for 2 < x < 3 and 3 < x < 5 because the graph of g is concave up there.

b. There is no value of x in the open interval (0, 3) at which g'(x) = Q(L_‘g(o). Explain why this does not

violate the Mean Value Theorem.

The Mean Value Theorem can only be applied if g is differentiable on the interval. At x = 2, there

is a sharp corner and g is not differentiable. Therefore it cannot be applied on the interval 0 < x <
3.

c. Find all values x in the open interval (—4, 5) at which the graph of f has a point of inflection. Explain
your reasoning.

The graph of f has a point of inflection at x = —1,x = 2, and x = 3.
f'(x) = g(x) changes from increasing to decreasing at x = 2, and f'(x) = g(x) changes from
decreasing to increasing at x = —1 and x = 3.

d. At what value of x does f attain its absolute minimum on the closed interval [—4, 5]? Give a reason for
your answer.

Because f'(x) = g(x) < 0 on the interval (—4,5), f is decreasing on the interval (—4,5).

Therefore, the absolute minimum value of f on the closed interval [—4, 5] occurs at the right
endpoint x = 5.



