Derivatives

Derivatives
Definition and Notation
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If y=f(x) then the derivative is defined to be f'(x)=lim=
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If y= f(x) then all of the following are If y = f/(x)all of the following are equivalent
equivalent notations for the derivative. notations for derivative evaluated at x=a.
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Interpretation of the Derivative
If y=f(x) then, 2. f'(a) is the instantaneous rate of
1. m=f"(a) is the slope of the tangent change of f(x) at x=a.
lineto y= f(x) at x =aand the 3. If f(x) is the position of an object at
equation of the tangent line at x=a is time x then f'(a) is the velocity of
givenby y=f(a)+f'(a)(x-a). the objectat x=a.

Basic Properties and Formulas
If f(x) and g(x) are differentiable functions (the derivative exists). ¢ and » are any real numbers,
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' / dx
2. (ftg) =f'(x)xg'(x) 6. di(r":]znx”‘l—Power Rule
3. {'fg)’ = f'g+ f ¢ —Product Rule n;( o , :
N g : 7. —(f(g(x)))=/"(g(x)€'(x)
4. [: :fgoﬁ — Quotient Rule This is the Chain Rule
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Common Derivatives
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Chain Rule Variants
The chain rule applied to some specific functions.
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Higher Order Der 1val1\ es
The Second Derivative is denoted as The n™ Derivative is denoted as
F(x)=FP(x)= ﬂ and is defined as £ (%)= 9/ and is defined as
dx” ax”
F"(x)=(f"(x)) . ie. the derivative of the 7" (x)= [ £ (x) ) . i.e. the derivative of
first derivative, f'(x). the (n-1)* derivative, £

Implicit Differentiation
Find " if €7 +x°y? =sin(y)+11x. Remember y = y(x) here. so products/quotients of x and y
will use the product/quotient rule and derivatives of y will use the chain rule. The “trick™ is to
differentiate as normal and every time you differentiate a y you tack on a y" (from the chain rule).
After differentiating solve for y'.

e (2-9y")+3x%y7 +2x° vy =cos () ¥ +11
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2e777 —9y e 135717 + 2y 1 =cos () 1 +11 = 3=

(2673 —9e¥ 7" —cos( 1))y =11-2¥"" —3x%y?
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The chain rule applied to some specific functions.
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" (x) =(f'(x_})’._ i.e. the derivative of the f("' (f ") r]) i.e. the derivative of
first derivative, f'(x). the (n-1)* derivative, £ (

Implicit Differentiation
Find " if e +x°y” =sin(y)+11x. Remember y = y(x) here, so products/quotients of x and y
will use the product/quotient rule and derivatives of y will use the chain rule. The “trick™ is to
differentiate as normal and every time you differentiate a y you tack on a y' (from the chain rule).
After differentiating solve for y".
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The chain rule applied to some specific functions.
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