Limits ... and How to Find Them

Limit of a function
Lim f(x)= L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close
X—>a

to a but not equal to a.
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Example: Let f(x) = o . Discuss the behavior of the values of f(x) when x is close to 0.
12
Solution: Make a table to see the behavior...
t 42 5]
NET+9 -3
£2

£1.0 |o0.16228

105 |0.16553
10.1 |0.16662
+0.05 | 0.16666

As t approaches 0. the values of the function seem to approach 0.16666...

NPT +9-3
lim————==10.16666
t—0 r‘
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One-Sided Limits
Definition: We write Lim f(x) = L and say the left-hand limit of f(x) as x approaches a is equal to L if
x—a”

we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a and less than a
1.e x approaches a from the left.

Definition: We write Lim f(x) = L and say the right-hand limit of f(x) as x approaches a is equal to L
x—=a

if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a and greater
than a i.e x approaches a from the right

Lim f(x)=L ifandonlyif Lim f(x)=L and Lim f(x)=L
x—a x—a’

x—=a
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Infinite limits

Definition: Let f be a function defined on both sides of a. Then

Lim f(x) = o means that the values of f{(x) can be made arbitrarily large by taking x sufficiently close
X—*a

to a., but not equal to a.
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Definition: Let f be a function defined on both sides of a. Then
Lim f(x) =—« means that the values of f(x) can be made arbitrarily large negative by taking x
X—+a

sufficiently close to a, but not equal to a.
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Vertical Asvinptotes

Definition: The line x = a is called a vertical asymptote of the curve y = f{x) if at least one of the following
statements is true:

Lim f(x)=» Limf(x)=w Lim f(x)=w
i—a X—a- x—=a”
Lim f(x)=—= Lim f(x)=—= Lim f(x)=—w
T—a x—=a” x—»a’
y
y
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Example: Find the vertical asymptotes of f(x) = tanx
SIn X

Solution: Because tanx =
COsX

There are potential vertical asymptotes where cosx = 0. In fact, since COSx —> 0" as

X — f%)_ and COSx >0 as x > (%)+ . whereas sin x is positive when x is near % . we have

lim tanx=o0 and lim tanx =—o0. This shows that the line X = % is a vertical asymptote.

x—){%)_ x—)(%)+

Similar reasoning shows that the lines X =(2n+1)7 h: (odd multiples of 7% b J.where n is an integer,

are all vertical asymptotes of f(x) = tanx.
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Calculating Limits Using the Limit Laws

Suppose that ¢ is a constant and the limits

Lim f(x) and Lim g(x) exist. Then

- x—a
L Lim[f(x) + g(x)] = lim 7 (x) + lim g ()

2. Lim[ f(x) = g (x)] = lim 7 (x) - lim g (xx)

3. Limlcf (x)] = elim f(x)

4. LimLf (x)g(x)] = lim £ (x).lim g ()
e =0

6. I;Eir'[f (0] :E‘;}l} f(x)]" where n is a positive integer.
7. Limc=c é.L:-'n.*.r =a

X—a X—a

9. Limx" =a", where n is a positive integer.
x—a

10. Lim ”xﬁ =% a . where n is a positive integer.
X—*a

" i} 'R . v .

11. Lim ”\,f(‘\) = r{l [ l]_lllf (x) .where n is a positive integer.

X—a X—a
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Evaluate 11m -

2 53y

39,2 lim(x® +2x* =1)
.oxT+2x -1 1
Solution: lim - =22 .
=2 5-3x lim (5 -3x)

x—=—12

lim x° +2lim x* — lim1

x—p—2 x——2 x——2

hms5-3limx

x—=—2 x——2
(-2)° +2(=2)" -1
5-3(-2)

11

-

Example. Find lim
=l y—1

-
£

Solution: Let f{x) =

. We can’t find the limit by substituting x=1 because (1) 1sn’t defined. Nor can

we apply the quotient rule because the limit of the denominator 1s 0. Instead we factor the numerator as a
difference of squares:

¥’ -1 (x=D(x+1)
x—1 x—1

the limit as x approaches 1. we have ¥ #1 so ¥ —1% 0. Therefore. we can cancel the common factor and

compute the limit as follows
g
Cox =1 (x=D)(x+1
lim——= llIllu
=y -1 xl ¥—1

= lim(x+1)
x—1

. The numerator and denominator have a common factor of x-1. When we take

=1+1=2
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The Squeeze Theoremn

If f(\) < o(x) < h(x) when x is near a and
Lim f(x)= Limh(x) =L then
x—+a x—a

Limg(x)=1L.

X—a

T |
Example. Show that limx~ sin—=0.
x—=0 X

. , . ;.1 . 7 .. o1 i !
Solution: First note that we cannot use limx~ sin— = 0= lim x~.limsin— because limsin— does
x—0 X x—=0 x—=0 X x—0 x

not exist. However since —1 < sin—< 1.
X
. . 3
Multiply all sides by x~
R 1 .l
— X =2 X sSlll—=X".
¥
. i . 2
We know that ]]1101 x° =0 and 111101{—_1( )=0
X—#

x—
. .1 , ,
Taking f(x)=—x".g(x)=x"sin(—).h(x) = x* in the squeeze theorem. we obtain
¥

. 1
limx?sin—=0
x—0 X
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The Precise Definition of a Limit

Let f be a function on some open interval that contains the number a. except possibly at a itself. Then we
say that the limit of f(x) as x approaches a 1s L. and we write

Lim f(x)= L if for every number & >0 there is a number & > 0 such that

X—+a

|f(x)-L

< & whenever () < |.1‘ — (f| <.
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Example prove that lim(4x—5)=7.
x—=3
Solution
1. Preliminary analysis of the problem (guessing a value for 0 ). Let € be a given positive number.

We want to find a number & such that
x—=3<o

|(4.‘\‘ -5)- _‘ < & whenever 0 <

. Therefore. we want 4‘.‘\‘ - 3| < £ whenever

But |(4x—5)—7| = 4x - 12| = [4(x = 3)| = 4x -3

< & . This suggests that we should choose

¥—3

< & thatis,

0<|x-—3

5:%.

2. Proof (showing that this & works). Given & >0, choose & = % IF0 <

E
= 1 whenever 0 < ‘.T -3

.‘f—3‘ < & . then

(4x=5)=7| =j4x—12|=[4(x=3)|=4|x 3| < 45 = 4(%) =€

)

Thus |[(4x—35)— 7| < & whenever 0 < ‘.\‘ -3

Therefore by definition of a limit
lim(4x—-5)=7.

r—u3
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Continuity

A function fis continuous at a number a if

lim f(x) = f(a)

Notice that the definition implicitly requires three things if f is continnous at a:
1. fia) is defined (that is, a is in the domain of f)

2. lim f(x) exists.
X—#a

3. li_l}l f(x)=fla)

, 1=
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A function f is continuous on an interval if it is continuous at every number in the interval.
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Example: Show that the function f(x)=1-— A1 —x~ is continuous on the interval [-1.1].
Solution: If -1 < a < 1, then using the Limit Laws. we have

Lim f(x)=lim(1- Vi-x7)

= 1—limv1—x"

X—+a

- 1- Mn'llijll(] —x?)

x—da
=1-+1-a’
= f(a)

Therefore f is continuous on [-1.1].

If fand g are continuous at a and ¢ is a constant. then the following functions are also continuous af a:

1.f+g 2.f-g 3.cf 4fzg 5 figifgha) =0

Any polynomial is continuous everywhere, that is it continuous on R = (—0,»0)
Any rational function is continuous wherever it is defined. that is. it is continuous on its domain.

12
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Intermediate Value Theorem

Suppose that fis continuous on the closed interval [a.b] and let N be any number between f{a) and f(b).
where f(a)= f(b). Then there exists a number c in (a.b) such that f(c) = N.

¥

i)
N

fia)

Example. Using the Intermediate Value Theorem. let’s
Show that there is a root of the equation

3 2 -~
dx” —6x" +3x—2 =0 between 1 and 2.

Solution: let f(x) = 4x° —6x% +3x —2 . We are looking for a solution of the given equation. that is, a
number ¢ between 1 and 2 such that f(c)= 0. Therefore. we take a=1, b=2, N=0.
Wehave f{1)=4-6+3-2=-1<0
f(2)=32-24+6-2=12=>0
Thus, (1) < 0 < £{2); that is. N = 0 is a number between f(1) and £(2). Now f is continuous since it is a

polynomial. so the Intermediate Value Theorem says there is a number ¢ between 1 and 2 such that f{c) =

. 3 2 A . .
In other words. the equation 4x~ —6x~ +3x—2 =0 has at least one root ¢ in the interval (1.2).
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