Limits ... and How to Find Them

8. Calculus: Limits and Derivatives

This section contains review material on:
e Limits

e Derivatives

Limits. We do not intend to go into theoretical considerations about limits and other concepts of
calculus, but rather concentrate on a few basic (mostly technical) issues.

We say that the limit of f(z), as @ approaches a, is L, and write limg_, f(2) = L, if we can make
the values f(x) as close to L as needed by choosing the values for x inside a small enough interval
around a (for various reasons we require that r # a).

This statement is far from a precise definition, but is a good one to start with; it enables us to

develop intuitive understanding of limits for functions of one variable.

Consider the following graphs.

v v4
v =fix)
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v ="1f{x)
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(a) (b) (c)

For functions in (a) and (b), im,_, f(z) = L. According to our definition, the behaviour of  at
a 1s irrelevant for its limit as z approaches a (remember, in the definition we required that z # a).

Thus, the function in (b) would have had a limit equal to L even if it were not defined at a.
Consider the case (¢). Can the limit of f({x) as & approaches a be 77

The answer 1s no — for the following reason: no matter how small interval around a we take, there
will always be values of x (in this case, to the right of «, inside the interval) for which the function

15 approximately equal to 3 — and that is not close to 7.

Using a similar argument, we could rule out any other real number as a value of the limit of f(x) as

& approaches a. In such cases, we say that the limit does not exist.
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Algebraically, we compute limits using limit laws

Limit laws
Assume that lim,_, f(&) and lim,_ , g(x) exist; then
limg— o (f(2) £ g(e)) = lime—y flo) £ lime—, g(2)

lim,, _, f(i]‘-f(:l'j = lim,_., f(‘l'] limy g glx)
Ii[]] f(r) _ Hm;b‘—@ f(r)

r—a Q'[:J."J N lilll_z'-_ﬂ g(-ir] lJ‘ l““.r'—n tﬂ:“’) '_rt 0

There are many more laws, most of which boil down to the following. Recall that an algebraic
function is a function that is built from polynomials by using elementary algebraic operations and

by taking roots. Then

If f(a) is an algebraic function and f(a) is defined, then lim,_., f(z) = f(a)

So, in some cases it is possible to compute limits by substituting a for .
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Example 1. Compute lim ﬂ
r—=3p? —4dr 44

Solution

Given function is an algebraic function; thus,

VI+3r V/3+3(3) _\/3[+9:v,§+9_

li = = ]
=Bz —4r+4  (3)2—4(3)+4
Exercise 1. Compute the following limits.
. xl—dr+2 . Vrl4ar+1-1
(a) lim ———— {(b) lim .
r——2 r—2 w1l \.-/'I_"I' 1
&

In some cases, we have to simplify an expression before taking limits. Let us consider a few examples.

Example 2. Compute the following limits.

2 3 2 s
R S | .ot —=x Lot —12
. b L
@)1 = (b) i — L
Solution
{a) Substituting & = 1, we get. 21 Y which is not defined (such expression is called an indeter-
r—1 ]
minate form). Notice that it is possible to cancel the fraction:
9 . .
.ort =1 . r—1)xr+1 )
lim = lim ﬁ = lim(x+1)=2.
r—1 r—1 r—1 r—1 r—1"
(b) As in (a), cancel the fraction:
;j - n 7
lim = lim(z~ = 1)=—1.
=) €T =1}

(¢) Factoring both the numerator and the denominator, we get

ot 4 —12 . (e —3)x+ 1) owet+d4 7
lim —— = lim —————= = = — ]
r—3 <=0 r—=3(x—3x+3) 2z=3x+4+3 6.
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Exercise 2. Compute the following limits.
2 —1 vl 4 — 21

IB —1 (b) rllll}l .I'2 — 49 T e = T

(a) lim
o 1
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Tangent and Derivative. Consider the graph of a funetion y = f(x), and pick a point P(x, f(x))

on 1t.
Y
secant line
fix+h) [-----------mmme - Q '
change
iny
flx) t------3 - f.,
© x changé inx x+h  x

Choose a nearby value of the variable, call it z + h (x + h is h units away from z; “nearby” means
that h is small). The corresponding value of the function is f{# + h). Now, we have two points on
the curve: P(z, f(x)) and Q(x + h, f(x + h)). The slope of the line joining these two points (this
line is called a secant line) is given by

_changeiny  fle+h)— fle)  fle+h)— [f(x)

o change in @ o r+h—1=x h

Now imagine that h gets closer and closer to zero, so that @ + h approaches x. In other words,
imagine that the point (¢ slides along the curve towards the point P. The limiting position of the
secant lines (joining P and Q) as @ approaches P 1s called the tangent line to the curve y = f(x)

at (x, f(x)). Tts slope is given by

f[»r—lrh)—f(w]l

m = slope of the tangent = lim
h—D h

provided that the limit in question exists,

This number is also called the derivative of f(z) at x, and 1s denoted by f'(x). Thus,

f'ie) = lim Hx+h) = J(2)

h—1 h

By computing f'(x) at all # where that is possible, we obtain the derivative function. Thus, the
derivative of a function is another function. The value of the derivative at a particular point is equal

to the slope of the tangent line at that point.
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Example 3. Find the equation of the line tangent to the graph of y = #? at the point (1, 1).

Solution

To get a line, we need a point (we have it) and a slope. The slope of a tangent is given by
m = limp_q Mﬂ: where f(x) = z? and = = 1. Thus,

[

14+ h)% =17 . 142h+h?=1 . 2h4h? .
m = lim Q+h)7=1 = lim bt St lim il lim(2+ h) = 2.
h—U h h—D h h—0 1 b=
It follows that the equation of the desired tangent lineis y — 1 = 2(x — 1); i.e,, y = 22— 1. ]

Example 4. Find the equation of the line tangent to the graph of y = 1/2 at the point where x = 2.

Solution

The point of tangency has coordinates # = 2 and y = 1/ = 1/2. To get the slope, we substitute

flz) = 1/z and ¥ = 2 into the definition:

2—(2+h
2y —h 1 _ o -1 -l
m = lim =——= = lim =lim —— = lim — = —.
h—D h =0 h h—02(24+h)h  h—02(24 h) 4
Thus, the equation of the tangent is y — % = —%(.r —2),ory = —%.r + 1. (]
Exercise 3. Find the equation of tangent to the graph of y = 1/2 at the point where = = 1.
+
Example 5. Using the definition, compute the derivative of f(z) = \/x.
Solution
The derivative of f(x) = \/x is given by
v h)— flz fe L h—
f'r{.'i'?) = Ilm f(d: * J) f(i] = lim srh \/I
h—10) h =0 h
“im Ve+h—r Je+h+x
T =0 h \I;{:—i—!l-—i-\/.’b_‘
. r+h—x . h
= lim = lim
=0 h(Ve+h+ ey =0 h(Ve+h+ Jx)
1
= lim ———————
h—0 (Va4 h+/r)
1
= n

Exercise 4. Using the definition, compute the derivatives of

(a) y=+vVe+1 (b)y=1/x
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Let y = fix). Besides f’(x), commonly used notation for derivatives includes y/', % and {—‘f-[L

Using the definition of the derivative, we could derive the following differentiation
formulas (¢ and n denote constants).

Derivative of constant functions and of powers of &
if f(x) =e¢, then f'(z) =0, in short, ¢' =0

i

if f(x) = a", then f'(x) = nz"~1; in short, (") = na"~!

Let f(x) and g{z) be two functions and denote by f'(x) and ¢'(x) their derivatives.

(fle) £ gle)) = f(2) £ 4¢'(x) (sum and difference rules)
(cflx)) =cf'(x) (constant times function rule)
(F(2)g(2)) = J'(z)g(z) + f(x)g'(x)  (product rule)

.’C(‘PJ)Ir - f'(-‘“)'.’f(“"') . f(r')gf(?-) uotlent rule
(y(x) a (g(x))? fauotient rue)
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Example 6. Compute the derivatives of the following functions.

(a) fz) =622 4 Te+4 (b) f(z) = 2"+ ;L% (¢) flz)= Vb a+ Vor
(d) y=av® (e)y= r—\ﬁ (f) fla) = Va? + Val,
Solution

(a) Using the sum rule and the constant times function rule, we get
flz)=6-204+7-14+0=1224+7.

(b) Write f(z) = 2% + 273, thus, f'(x) = 32? — 32—,

(c) Rewrite f{z) as f{x) = \/3.1' + \/3\/_ =52+ 5?2 Thus,

V5

2z

(d) Since /5 is a constant, we apply the 2" rule with n = /5; thus, y = ﬁr‘/g_l_

(e) Write y = /32~ it follows that ¥ = V3(—=10)z "%,

(F) flo) = a3 + 2213 thus, f'(z) = 221/ + 227173,

fry=v5-1+v6ia =6+

Exercise 5. Compute the derivatives of the following functions.

) . ) 5] x?
(3) S = Vo - = (b) fx) = dht
(dyy=a+7>+2",

D
S

|

B
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Example 7. Find the equation of the line tangent to the curve y = ——————
i+t +1
where = 0.

Solution

at the point

Substituting » = 0 into the formula for y, we get y = 1; so, the point of tangency is (0, 1). The slope

of the tangent line is given by m = y/(0). Using the quotient rule,
0t e e ) - 140 20 4 1) 42 4 2x + 1
N (zt+224+2+1)2 (et ettE 1)
It follows that /(0) = —1; the equation of the tangent is y — 1 = —1(x — 0), L.e., y = —2 + 1.

Y

. . . : x+3
Exercise 6. Find the equation of the line tangent to the curve y = ————
0 e+ o+ 3
r =10,

&

at the point where
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The derivatives of exponential, logarithmic and trigonometric functions are given below.

1
rlna

) . . 1

(e™) = e” (@Y =a"Ina (Inz) = = (log, z) =
T

(sinz) = cosx (cosz) = —sinx (tanz) = sec”

(csca) = —cscaxcotx (sec ) = sec x tan x (cot r) = —cse?x
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Example 8.

- . 5 . cosx — 1
(a) Compute y' if y = r"secz. (b) Compute ¢ if y = ———.
sin
(¢) Derive the formula for (tan ).
Solution
(a) Using the product rule, we get i = 2rsecz + #°sec & tan x.
(b) By the guotient rule,
, —sinz sinz — (cose — 1)cosx —sin’e —ecos?x +cosr  cosx— 1
y f— " _ — ; —_ —
(sinz)? sin” sin” &
(¢) Applying the quotient rule,
, sinz " cosr cosr — sina(—sinz) 1 5
(tanz) = = = - —— —sec . ]
cosx (cosz)” cos?
Exercise 7.
: . tan x . . :
(a) Compute 3 if y = . (b) Compute ' if y = 3sinztanz + 3.
ec T

(e) Derive the formula [Qec rY = secrtan .

11



Limits ... and How to Find Them

Chain Rule. The derivative of the composition of two functions is computed as a product of their
derivatives. To be precise: Let f(z) and g(x) be two functions and let (g o f)(z) = g(f(x)) be their

composition.

Chain rule (version I)

I h(w) = g(f(x)), then h'(x) = ¢'(f(x)) ['(x)

Note: in computing the composition g(f(x)), we apply f to = first, and then we apply ¢ to f(z).
According to the chain rule, when doing the derivative, we proceed in the opposite order: g is done
first, and then f. One more thing: the f(z) part in ¢’(f{2)) states that, while doing the derivative
of ¢, we do not change f(x) (the f{x) term is usually called the “inside” ).

Sometimes we think of the composition in the following way: y = g(u) and v = f(x) (i.e., y depends

on u, and u depends on z). In that case, y depends on = and its derivative is

Chain rule (version 1T}
dy dy du

y = g(u) and u = f(x), then de ~ du dz

12
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Example 9. Compute the derivatives of the following functions.

, , |
(a) y = (&2 + DM (b) y=+sinx + 1 (¢) y= e+ 9

(d) y =sin(a? + 1) (e) y = cos(sec x) (f) y = (sinz)* + sin(x?).
Solution

(a) We start by computing the derivative of the power of 14 :
Yy o= 142+ )BT+ 1) = 142 + )18 22 = 282(2 + 112,
(b) Writing y = (sinx + 1)'?, we get

Yy = _%,('sin x4+ 1) Y sine + 1) = _%,(sin.r + 1) cosz = %cos r(sine + 1)~ V2

(c) y=(e" +2)71; thus,

E;t‘

= (=1We" +2) e +2) = —"(e" +2) P20 —
R G R G e e
(d) We start by computing the derivative of sin:

y' = cos(x> 4+ 1) (22 + 1) = 2z cos(2® 4 1).
(e) ¥ = —sin(sec x) (sec ) = —sin(sec x) sec v tan .
(f) We have to he careful about the order:

y = 2sinz) (sinz)’ + cos(z?) (¢?) = 2sinz cos & + 2z cos(x”) = sin 2z + 2z cos(z?).

In simplifying, we used the formula 2sin # cos ¢ = sin 2.

13
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Exercise 8. Compute the derivatives of the following functions.
@ y= 3175 (b) y = (V& +1)° (¢) tan(z?) + tan(a? + 1)
(d) y = sec(e”) (e) y = cos®(z%) (f) y = 22sin(1/z).

Example 10. Compute the derivatives of the following functions.

(a) y = = t? (b) y = In(sinx + 2) (c) y=2%
(d) y=In{z* + 3z + €") (e) y= €% 4 sin(e”) (f) y = sec Vri+ .
Solution

(a) We start by doing the derivative of the exponential function:

y! — €4$+2{4;1.' + 2)( :48—1.T+2_

(b) The derivative of Inz is 1/2; thus,
COs &

1
W = —— (sine+2)Y = ——.
Y ( +2) sina + 2

sinx + 2
(¢) The derivative of 2 is 27 In 2; it follows that
Y =2%1n2 (32) =3-2%In2
(d) As in (b),

20+ 34"

_ 2 ot
4 Y = e

(e) ¥ = "™ "(sin®) + cos(e”)(e”) = cos xe™™ 7 + e” cos(e”).
(f) Write y = sec(z? + 2)/? and recall that (sec &) = sec x tan x. Then
Y = sec(z? + )2 tan(2? + )2 (2% + 2)'/2)

= sec(x” + x) P tan(x® + o)V E (2 4+ 2)T V(20 + 1),

Exercise 9. Compute the derivatives of the following functions.

(a) y = In/& + Vinz (b)y= i;iﬁ; (¢) flx)y=2%
(d) y=e" + 2" + ¢ (e) y = sec®(Inx)

14
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Exercise 8. Compute the derivatives of the following functions.
(a) y = P by y=(Jer+1)* (¢) tan(a?) + tan(z® + 1)
(d) y = sec(e”) (e) y = cos?(z?) (f) y = «”sin(1/x).

Example 10. Compute the derivatives of the following functions.

(a) y= gzt (b) y = In(sinx + 2) (c)y= 93z
(d) y = In(x* + 3 +€") (e) y= "% + sin(e”) (f) y =secva?+r.
Solution

(a) We start by doing the derivative of the exponential function:

o = M2 (4p 4 2) = 4e0t2

(b) The derivative of Inx is 1/x; thus,
cos ¥

1
y = —— (sine+4+2) = ——.
4 ( +2) sina + 2

T osina+ 2
(¢) The derivative of 2¥ is 2" In 2; it follows that
Y =2%1n2 (3x) =3-2%In2
(d) As in (b),

204+ 346"
? + 3xr v’

v = L ‘_v(:cz—i—:%::—l—c:“)":

(e) ¥ = e (sinz) + cos(e”)(e”) = cosxe®" T + €7 cos(e”).
(f) Write y = sec(2? + 2)1/2 and recall that (sec ) = sec x tan z. Then
Y =sec(x? + ) tan(a® + o) (2 + 2)' Y
= sec(z? +#)/?tan(a? + 2) L(2? + 2)7 V(20 4+ 1)

—
Exercise 9. Compute the derivatives of the following functions.

(@) y =lny/z+ Vinz )= (c) fla) =27
(d) y=e"+a° +¢° (e) y = sec’(Inx)

15
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Example 11. Find dy/dx for the following functions.
(a) y = 4u® — 3u 42, u = ™ 4 277 (b) y=Inu, u=sinz+ cosx

Solution

(a) By the chain rule,

dy _dy du
de  du dr
(b) Asin (a),

dy _ dy du

COS T — SIn &
dr ~ du dz

1 .
= —(cosx —sinx) = — .
" sin.r 4 cos.ar

= (Su—3)(e" + 1) = 8((e” 4 2¢*7) — 3)(e” + 1e77).

Exercise 10, Compute the derivatives of the following funetions.
a)y = Vul+2 u=cota (b) y=logau, u=¢e"+4

16



