RULE 1 Derivative of a Constant Function

If f has the constant value f(x) = c, then

$$\frac{df}{dx} = \frac{d}{dx}(c) = 0.$$

RULE 2 Power Rule for Positive Integers

If n is a positive integer, then

$$\frac{d}{dx}x^n = nx^{n-1}.$$

RULE 3 Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

$$\frac{d}{dx}(cu) = c\frac{du}{dx}.$$

RULE 4 Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differentiable at every point where u and v are both differentiable. At such points,

$$\frac{d}{dx}(u+v)=\frac{du}{dx}+\frac{dv}{dx}.$$

RULE 5 Derivative Product Rule

If u and v are differentiable at x, then so is their product uv, and

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

RULE 6 Derivative Quotient Rule

If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u/v is differentiable at x, and

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}.$$

RULE 7 Power Rule for Negative Integers

If *n* is a negative integer and $x \neq 0$, then

$$\frac{d}{dx}(x^n) = nx^{n-1}.$$

Second- and Higher-Order Derivatives

If y = f(x) is a differentiable function, then its derivative f'(x) is also a function. If f' is also differentiable, then we can differentiate f' to get a new function of x denoted by f''. So f'' = (f')'. The function f'' is called the **second derivative** of f because it is the derivative of the first derivative. Notationally,

$$f''(x) = \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{dy'}{dx} = y'' = D^2(f)(x) = D_x^2 f(x).$$

The symbol D^2 means the operation of differentiation is performed twice.

If $y = x^6$, then $y' = 6x^5$ and we have

$$y'' = \frac{dy'}{dx} = \frac{d}{dx} (6x^5) = 30x^4.$$

Thus $D^2(x^6) = 30x^4$.

If y" is differentiable, its derivative, $y''' = dy''/dx = d^3y/dx^3$ is the **third derivative** of y with respect to x. The names continue as you imagine, with

$$y^{(n)} = \frac{d}{dx}y^{(n-1)} = \frac{d^ny}{dx^n} = D^ny$$

denoting the *n*th derivative of y with respect to x for any positive integer n.

The derivative of the sine function is the cosine function:

$$\frac{d}{dx}(\sin x) = \cos x.$$

The derivative of the cosine function is the negative of the sine function:

$$\frac{d}{dx}(\cos x) = -\sin x$$

Derivatives of the Other Trigonometric Functions

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$