Absolute Maximum and Absolute Minimum

Set 1

Example Find the absolute maximum and absolute minimum values of f(x) = — T on the interval [0, 2]
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Example Find the absolute maximum and absolute minimum values of f(z) =

IZ":_ 7 on the interval [0, 2]

Absolute extrema on a closed interval are found using the Closed Interval Method:

1) Find the values of f at the critical numbers of f in (a,b).

2) Find the values of f at the endpoints of the interval.

3) The largest of the values from 1) and 2) is the absolute maximum; the smallest of these values is the absolute minimum.

We need the critical numbers. We need to find where f/(¢) = 0 and where f’(r) does not exist. Since 22 41 # 0 for real
valued =, the derivative always exists.
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For f'(e) = 0, the nunerator must equal zero,
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We have shown that f'(1) = 0 and f'(—1) = 0. The critical numbers are +1,—1. Only +1 is in the interval (0, 2).

Now, we evaluate the function at the critical numbers in the interval and at the endpoints of the interval:
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The largest number is 1/2, so this is the absolute max and it occurs at x = +1. The smallest number is 0, so this is the
absolute min and it occurs at = = 0.
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Example Find the absolute maximum and absolute minimum values of f(x) = lnz on the interval [1, 3]

Absolute extrema on a closed interval are found using the Closed Interval Method:

1) Find the values of f at the critical numbers of f in (a.b).

2) Find the values of f at the endpoints of the interval.

3) The largest of the values from 1) and 2) is the absolute maximum; the smallest of these values is the absolute minimum.

We need the critical numbers, which means we need to find where f'(c¢) = 0 and where f'(x) does not exist. The only
place we could have the derivative not defined is for = < 0; Iuckily, this is outside of the interval (1,3) so we don’t need
to worry about the derivative being undefined.
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For f'(c) =0, the numerator must equal zero,
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We have shown that f’(e) = 0. The eritical number is e, which lies in the interval (2.3).
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Now, we evaluate the function at the critical numbers in the interval and at the endpoints of the interval:
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The smallest nmimber is 0. so this is the absolute min and it occurs at = = 1.

It is difficult to determine if 1/e > In3/3 without resorting to a calculator, or more powerful techniques we have yet to
learn. But we can argue based on the properties of derivatives that we must have 1/e > In3/3.

Since the function is contimious in the interval and has a minimum at = = 1, and the derivative at = = e is zero means the
tangent line is horizontal at = = e, and there are no other critical numbers for the function, the function must lie below
its tangent line near = = e. Read that again and see why are the conditions listed are necessary. You might want to draw
the function above the tangent line at » = e and see how that leads to contradictions. The funetion must therefore look
something like:

I
T

Therefore, the function has an absolute max of 1/e at = = e.
Example If a and b are positive mumbers, find the maximum value of f(z) = 2*(1 —z)b, 0 <z < 1.

The derivative will always exist since a and b are positive (if they could be negative, we could have a denominator other
than 1).
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Example If a and b are positive numbers, find the maximum value of f(z) = 2%(1 —z)?, 0 <z < 1.

The derivative will always exist since a and b are positive (if they could be negative, we could have a denominator other
than 1).

The only critical numbers will be if f'(¢) = 0
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The eritical number is therefore ¢ = L.
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Now, we evaluate the function at the critical numbers in the interval and at the endpoints of the interval:
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Therefore, the maximum value of f(r) =2%(1—=z)?, 0<z < 1is ( “ ) (
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