Set 2

Worksheet Curve Sketching Calculus

Do Not Use Calculator

- 1) Determine where $y = 7x^3 4x^2 4x + 15$ has local maximum or minimum values.
 - A) local max where $x = -\frac{2}{3}$

B) local max where $x = -\frac{2}{7}$

local min where $x = \frac{2}{7}$

local min where $x = \frac{2}{3}$

C) local max where $x = \frac{2}{3}$

D) local max where $x = \frac{2}{7}$

local min where $x = -\frac{2}{7}$

local min where $x = -\frac{2}{3}$

2) Find the absolute maximum value of the function $f(x) = -\frac{x^4}{4} + 2x^3 + 8x^2$.

Support your answer graphically.

A)8

B) 512

C) -2

D) 12

3) Suppose f'(-1) = 0, f'(x) > 0 to the right of x = -1, and f'(x) > 0 to the left of x = -1. Does f have a relative minimum, a relative maximum, or neither at x = -1? Explain your answer.

Do Not Use Calculator

- 4) For $y = x^4 12x^2 + 8$, use analytic methods to find the exact intervals on which the function is
 - (a) concave up
 - (b) concave down.

Then

(c) find any inflection points.

Set 2

Answers

- 1) Answer: B
- 2) Answer: B
- 3) Answer: neither
- 4) Answer: (a) $(-\infty, -\sqrt{2}), (\sqrt{2}, \infty)$ (b) $(-\sqrt{2}, \sqrt{2})$ (c) $(-\sqrt{2}, -12)$ and $(\sqrt{2}, -12)$

Set 2

- 5) Let $y = e^{-2x}$ on the domain [2, 3]. Find the exact intervals on which the function is (a) increasing
 - (b) decreasing

Then

(c) find any local extreme values.

6) Find the subinterval(s) of $[0, 2\pi]$ on which the graph of $\cos x$ is concave up.

(0,
$$\frac{\pi}{2}$$
) U ($\frac{3\pi}{2}$, 2π)

B)
$$(\pi, 2\pi)$$

$$(0, \pi)$$

D)
$$(\frac{\pi}{2}, \frac{3\pi}{2})$$

- 7) Let $f(x) = x^4 + ax^2$. What is the value of a if f has a local minimum at x = 5? C) a = 50
- B) a = -50
- D) a = 0

8) Use the graph of f'(x) to estimate the interval(s) on which the function f is increasing. Explain your answer.

[-6,6] by [-6,6]

- (a) $(-\infty, -3.5] \cup [3.5, \infty)$
- (b) [-3.5, 3.5]
- (c) $(-\infty, -2.4] \cup [0, 2.4]$
- (d) [-1.41, 1.41]
- 9) Let $f(x) = x^4 + ax^2$. What is the value of a if f has a point of inflection at x = -6?

Set 2

Answers

- 5) Answer: (a) none
 - (b) [2, 3]
 - (c) maximum at $(2, e^{-4})$; minimum at $(3, e^{-6})$
- 6) Answer: D
- 7) Answer: B
- 8) Answer: (b) The function is increasing when the derivative is greater than zero.
- 9) Answer: a = **-**216