Calculus

Quiz 5: Differentiation Rules

Problem 1 (5 points). Differentiate the function $f(x) = \sqrt{e^{-x} + 2}$.

Problem 2 (1 + 1 + 3 = 5 points). Consider the function $y = x^{10} + \sin(x)$. Find each of the following.

(a)
$$\frac{dy}{dx} =$$

(b)
$$\frac{d^2y}{dx^2} =$$

(c)
$$\frac{d^{99}y}{dx^{99}} =$$

Answers

Math 1A: Calculus Instructor: Alexander Paulin

Quiz 5: Differentiation Rules

Your name: Discussions 201, 203 // 2018-10-12

Problem 1 (5 points). Differentiate the function $f(x) = \sqrt{e^{-x} + 2}$.

Solution: Apply the power rule and the chain rule (twice):

$$f'(x) = \frac{1}{2} (e^{-x} + 2)^{-1/2} \frac{d}{dx} (e^{-x} + 2)$$
$$= \frac{e^{-x} \frac{d}{dx} (-x)}{2\sqrt{e^{-x} + 2}}$$
$$= \boxed{\frac{-1}{2e^x \sqrt{e^{-x} + 2}}}.$$

Problem 2 (1 + 1 + 3 = 5 points). Consider the function $y = x^{10} + \sin(x)$. Find each of the following.

(a)
$$\frac{dy}{dx} = 10x^9 + \cos(x)$$

(b)
$$\frac{d^2y}{dx^2} = 90x^8 - \sin(x)$$

(c)
$$\frac{d^{99}y}{dx^{99}} = -\cos(x)$$

Problem 3 (5 points). Find values of a and b that make the below function differentiable at t = 0.

$$f(t) = \begin{cases} te^{t} + 3 \tan t & \text{for } t \leq 0 \\ \frac{at + b}{t + 1} & \text{for } t > 0. \end{cases}$$

Answers

Problem 3 (5 points). Find values of a and b that make the below function differentiable at t = 0.

$$f(t) = \begin{cases} te^t + 3\tan t & \text{for } t \le 0\\ \frac{at+b}{t+1} & \text{for } t > 0. \end{cases}$$

Solution: First, we need b = 0 in order for the function to be continuous:

$$\lim_{t \to 0^+} f(t) = b$$
$$f(0) = 0e^0 + 3\tan 0 = 0.$$

We also need the derivatives of the two pieces to match up at t = 0.

$$\frac{d}{dt}(te^t + 3\tan t) = te^t + e^t + 3\sec^2(t),$$

$$\frac{d}{dt}\left(\frac{at}{t+1}\right) = \frac{a(t+1) - at}{(t+1)^2}$$

$$= \frac{a}{(t+1)^2}.$$

Equating these at t = 0 gives the condition

$$0e^{0} + e^{0} + 3\sec^{2}(0) = \frac{a}{1^{2}}$$
$$4 = a$$

so
$$a = 4$$
 and $b = 0$.