Logarithms ... Set 2

$$\log A + \log B = \log AB$$

This law tells us how to add two logarithms together. Adding $\log A$ and $\log B$ results in the logarithm of the product of A and B, that is $\log AB$.

For example, we can write

$$\log_{10} 5 + \log_{10} 4 = \log_{10} (5 \times 4) = \log_{10} 20$$

The same base, in this case 10, is used throughout the calculation. You should verify this by evaluating both sides separately on your calculator.

Second Law

$$\log A - \log B = \log \frac{A}{B}$$

So, subtracting $\log B$ from $\log A$ results in $\log \frac{A}{B}$.

For example, we can write

$$\log_{e} 12 - \log_{e} 2 = \log_{e} \frac{12}{2} = \log_{e} 6$$

The same base, in this case e, is used throughout the calculation. You should verify this by evaluating both sides separately on your calculator.

Third Law

$$\log A^n = n \log A$$

So, for example

$$\log_{10} 5^3 = 3 \log_{10} 5$$

You should verify this by evaluating both sides separately on your calculator.

Two other important results are

$$\log 1 = 0, \qquad \qquad \log_m m = 1$$

The logarithm of 1 to any base is always 0, and the logarithm of a number to the same base is always 1. In particular,

$$\log_{10} 10 = 1$$
, and $\log_e e = 1$

Logarithms ... Set 2

Exercises

- 1. Use the first law to simplify the following.
 - a) $\log_{10} 6 + \log_{10} 3$,
 - b) $\log x + \log y$,
 - c) $\log 4x + \log x$,
 - d) $\log a + \log b^2 + \log c^3$.
- 2. Use the second law to simplify the following.
 - a) $\log_{10} 6 \log_{10} 3$,
 - b) $\log x \log y$,
 - c) $\log 4x \log x$.
- 3. Use the third law to write each of the following in an alternative form.
 - a) $3\log_{10} 5$,
 - b) $2\log x$,
 - c) $\log(4x)^2$,
 - d) $5 \ln x^4$,
 - e) ln 1000.
- 4. Simplify $3 \log x \log x^2$.

Logarithms ... Set 2

Answers

- 1. a) $\log_{10} 18$, b) $\log xy$, c) $\log 4x^2$, d) $\log ab^2c^3$.
- 2. a) $\log_{10} 2$, b) $\log \frac{x}{y}$, c) $\log 4$.
- 3. a) $\log_{10} 5^3$ or $\log_{10} 125$, b) $\log x^2$, c) $2\log(4x)$, d) $20\ln x$ or $\ln x^{20}$, e) $1000=10^3$ so $\ln 1000=3\ln 10$.
- 4. $\log x$.