Zero & Negative Exponents

Discovery:

Simplify

$$\frac{12}{12} = \frac{5}{5} =$$

Simplify

X⁴

X⁴

Do Now:

Zero Exponents

Rule #1:

An Exponent of ZERO

$$a^0 =$$

$$3^{0} =$$

$$(-3)^0 =$$

a)
$$(-6)^{\circ} =$$

b)
$$x^0 =$$

c)
$$\cdot (7)^{o} =$$

d)
$$(25xyz)^0 =$$

$$e) \cdot y^{o} =$$

f wordo =

REMEMBER: anything to the zero power is 1

 $-(8x)^0 = -1 \rightarrow (8x)^0 = 1$ but the - sign is not raised to the 0 power

$$\left(-\frac{4}{3}\right)^0 = 1$$

Negative Exponents

CAUTION

ALERT! ALERT! ALERT! ALERT! ALERT!

A negative exponent does NOT make the number negative!!!

Ex: _____

Instead, a negative exponent says:

"I'm feeling negative b/c I do not like where I
right now. I need to make a change and
to a new a new place so I can feel

RULE:

$$10^{-2} = \frac{1}{10^2}$$

All negative exponents can be written as a fraction with 1 in the numerator and the positive exponent in the denominator.

Let's Try

- 1. $\frac{1}{6^{-2}}$
- 2. $\frac{2}{x^{-2}}$

3. $\frac{y^{-3}}{3}$

4. -20

5. (-3)⁻²

6. $\frac{1}{2^{-2}}$

7. $\left(\frac{1}{4}\right)^{-2}$

8. 3-2

9. (-3x)²

1. 2-4	2. 4 ⁻²	3. x ⁻⁶
4. 3z ⁻²	5. $\frac{1}{3^2}$	6. 5 ⁰
7. 2 ⁻⁵ ·2 ³	8. x ³ ·x ⁻⁷	9. $\frac{3^3}{3^5}$
10. $\frac{x^4}{x^{-6}}$	11. x ⁰	12. 1001 ⁻¹

Zero & Negative Exponents

 $\underline{\textbf{Directions}} \textbf{: Rewrite each item as an equivalent expression in exponential notation.}$

Answers should only have positive exponents.

$$1) \frac{5 \cdot 5 \cdot 5 \cdot 5}{5 \cdot 5} =$$

2)
$$\frac{(-2)}{(-2)}$$
 =

3)
$$\frac{(0.12)(0.12)(0.12)}{(0.12)(0.12)} =$$

4)
$$\frac{7 \cdot 7 \cdot 7}{7 \cdot 7 \cdot 7 \cdot 7 \cdot 7} =$$

5)
$$\frac{15^6}{15^9}$$
 =

6)
$$\frac{(-7)^5}{(-7)^3} =$$

$$7) \ \frac{\left(\frac{3}{4}\right)^5}{\left(\frac{3}{4}\right)} =$$

8)
$$\frac{12^4}{3^4}$$
 =

9)
$$\frac{6^9}{6^9}$$
 =

10)
$$\frac{7^4 \cdot 7^5}{7^9} =$$

11)
$$\frac{(9^3)^0 \cdot 5^2}{5^5} =$$

Write the following algebraic problems in exponential notation.

12)
$$\frac{x^7}{x^3} =$$

13)
$$\frac{a^2b}{a^6b^2} =$$

14)
$$\frac{t^5}{t^5} =$$

15)
$$\frac{x^4y^2}{x^3y^8} =$$

Rewrite each item as an equivalent expression in exponential notation. Answers should only have positive exponents.

16)
$$2^{-5} =$$

17)
$$(-6)^{-4} =$$

Tell whether each statement is correct. Show work to support your answer.

18)
$$(-5)^{-3} = \frac{1}{(-5)^{-3}}$$

19)
$$\frac{8^4}{8^4} = 8$$

20)
$$7^0 = \frac{7^5}{7^5}$$

21)
$$\frac{x^8}{x^4} = x^2$$

$$22) 5^6 \cdot \frac{1}{25} = 5^8$$

$$(7^4)^{-2} = \frac{1}{49^4}$$

Intro to Exponential Functions

Simplify the Following:

1] (-4) ²	2] -4 ²	3] 3 ² • (-2) ³
4] a ² • a ³	5] (d ⁴)(d ⁶)	6] (x ⁴) ³
7] (2x ² y ³) ⁴	8] z ⁰ • z ²	9] x ⁻³
10] 5 ⁻²	11] (-2x²)(6x³)(x²)	12] $\frac{12a^{-2}}{4}$

Features of Exponential Functions

An exponential function with base b is defined by $f(x) = ab^x$ where $a \neq 0$, b > 0, $b \neq 1$, and x is any real number. The base, b, is constant and the exponent, x, is a variable.

In the following example, a = 1 and b = 2.

-:		
	x	y = f(x)
	-2	2-2 = 1/4
	-1	2 ⁻¹ = ½
	0	2 ⁰ = 1
	1	21= 2
	2	22 = 4
	3	2 ³ = 8

Shape: Most exponential graphs will have this same arcing shape.

Rate of Change:

This graph does not have a constant rate of change, but it has constant ratios. It is growing by common factors over equal intervals.

Features (for this graph):

- the domain is all Real numbers.
- the range is all positive real numbers (not zero).
- graph has a y-intercept at (0,1). Remember any number to the zero power is 1.
- when b > 1, the graph increases. The greater the base, b, the faster the graph rises from left to right.
- when 0 < b < 1, the graph decreases.
- has an asymptote (a line that the graph gets very, very close to, but never crosses or touches). For this graph the asymptote is the x-axis (y = 0).

	x	y	
-1 (-2	1/4	Dx
1	-1	1/2	5×
2	0	1	
-1	1	2	3×
-1 🤇	2	4	2×
-1 🤇	3	8 MathBits	12×

As x increases by +1, y increases by x 2.

Graphing Exponential Functions: 1] $f(x) = 2^x$

$$1|f(x) = 2^x$$

X	y

X	y

Observations:

3] $f(x) = 0.5^x$

x y

-1

0

1

2

4] $h(x) = -2^x$

x y

-1

0

1

2

Observations: