Functions and Graphs

Constant Function

$$y = a$$
 or $f(x) = a$

Graph is a horizontal line passing through the point (0, a).

Line/Linear Function

$$y = mx + b$$
 or $f(x) = mx + b$

Graph is a line with point (0,b) and slope m.

Slope

Slope of the line containing the two points (x_1, y_1) and (x_2, y_2) is

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}}$$

Slope - intercept form

The equation of the line with slope m and v-intercept (0,b) is

$$y = mx + b$$

Point - Slope form

The equation of the line with slope m and passing through the point (x_1, y_1) is

$$y = y_1 + m(x - x_1)$$

Parabola/Quadratic Function

$$y = a(x-h)^{2} + k$$
 $f(x) = a(x-h)^{2} + k$

The graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex at (h, k).

Parabola/Quadratic Function

$$y = ax^2 + bx + c$$
 $f(x) = ax^2 + bx + c$

The graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex

at
$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$
.

Parabola/Quadratic Function

$$x = ay^2 + by + c$$
 $g(y) = ay^2 + by + c$

The graph is a parabola that opens right if a > 0 or left if a < 0 and has a vertex

at
$$\left(g\left(-\frac{b}{2a}\right), -\frac{b}{2a}\right)$$
.

Circle

$$(x-h)^2 + (y-k)^2 = r^2$$

Graph is a circle with radius r and center (h,k).

Ellipse

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Graph is an ellipse with center (h,k) with vertices a units right/left from the center and vertices b units up/down from the center.

Hyperbola

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Graph is a hyperbola that opens left and right, has a center at (h, k), vertices a units left/right of center and asymptotes that pass through center with slope $\pm \frac{b}{a}$.

Hyperbola

$$\frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1$$

Graph is a hyperbola that opens up and down, has a center at (h,k), vertices b units up/down from the center and asymptotes that pass through center with

slope
$$\pm \frac{b}{a}$$
.