Geometry Cheat Sheet

Notation:

 \cong congruent

~ similar

Δ triangle

∢ angle

|| parallel

___ perpendicular

 \overline{AB} line segment AB

 \widehat{AB} arc AB

Equation of a Line:

$$y = mx + b$$

$$m = slope = \frac{\Delta y}{\Delta x} = \frac{rise}{run}$$

b = y - intercept

Point Slope Form:

$$y - y_1 = m(x - x_1)$$

Parallel and Perpendicular Lines:

Parallel: Same Slope

m = m

$$y = x + 2$$
 $y = x$

Perpendicular: Take negative reciprocal

$$m \rightarrow -1/m$$

Distance Formula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint Formula:

$$M = (\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2})$$

Law of Sins:

$$\frac{a}{Sin A} = \frac{b}{Sin B} = \frac{c}{Sin C}$$

Law of Cosines:

$$c^2 = a^2 + b^2 - 2abcosC$$

Converting Degrees to Radians:

$$ex: 60^{\circ} \times \frac{\pi}{180} = \frac{\pi}{3}$$

Converting Radians to Degrees:

$$ex: \frac{\pi}{3} \times \frac{180}{\pi} = 60^{\circ}$$

Angle of Elevation:

SOH CAH TOA:

$$sin(x) = \frac{opposite}{hypotenuse}$$

$$cos(x) = \frac{adjacent}{hyntenuse}$$

$$tan(x) = \frac{opposite}{adjacent}$$

Inverse Trig. Functions:

$$sec(x) = \frac{1}{cos(x)}$$

$$csc(x) = \frac{1}{\sin(x)}$$

$$cot(x) = \frac{1}{tan(x)}$$

Complimentary Angles:

$$sin(90^{\circ} - \theta) = cos(\theta)$$
 $csc(90^{\circ} - \theta) = sec(\theta)$

$$\cos(90^{\circ} - \theta) = \sin(\theta)$$

$$sec(90^{\circ} - \theta) = csc(\theta)$$

$$tan(90^{\circ} - \theta) = cot(\theta)$$

$$cot(90^{\circ}-\theta)=tan(\theta)$$

Transversals: Given two lines are parallel and are cut by a transversal line.

Alternate Interior Angles:

Alternate Exterior Angles:

Corresponding Angles:

$$\sphericalangle a = \sphericalangle e, \sphericalangle b = \sphericalangle f, \sphericalangle c = \sphericalangle g, and \sphericalangle d = \sphericalangle h$$

Supplementary Angles:

$$\sphericalangle c + \sphericalangle e = 180^{\circ}, \sphericalangle d + \sphericalangle f = 180^{\circ}, \sphericalangle a + \sphericalangle b = 180^{\circ},$$

 $\sphericalangle c + \sphericalangle d = 180^{\circ}, \sphericalangle e + \sphericalangle f = 180^{\circ}, \sphericalangle g + \sphericalangle h = 180^{\circ}$

Properties of a Parallelogram:

- 1) Opposite sides are parallel.
- 2) Pairs of opposite sides are congruent.
- 3) Pairs of opposite angles are congruent.
- 4) Diagonals bisect each other.
- 5) Diagonals separate parallelogram into 2 congruent triangles.
- 6) Interior angles add up to 360° .

The following shapes are all Parallelograms:

- 1) Square (also a rhombus and a rectangle)
- 2) Rhombus 🔷
- 3) Rectangle

Transformations:

Reflection in the x-axis: $A(x,y) \rightarrow A'(x,-y)$

Reflection in the y-axis: $A(x,y) \rightarrow A'(-x,y)$

Reflection over the line y=x: $A(x,y) \rightarrow A'(y,x)$

Reflection through the origin: $A(x,y) \rightarrow A'(-x,-y)$

Transformation to the left m units and up n units: $A(x,y) \rightarrow A'(x-m,y+n)$

Rotation of 90°: $A(x,y) \rightarrow A'(-y,x)$ Rotation of 180°: $A(x,y) \rightarrow A'(-x,-y)$ Rotation of 270°: $A(x,y) \rightarrow A'(y,-x)$

Dilation of $n: A(x, y) \to A'(xn, yn)$

Congruent Triangles \cong :

SAS SSS

AAS

HL –(only for right triangles)

ASA

When proven use: Corresponding parts of congruent triangles are congruent (CPCTC)

Similar Triangles ~:

AA SSS

SAS

When proven use: Corresponding sides of similar triangles are in proportion.

Midpoint Triangles Theorem:

 ΔABC has midpoints at point D and point E. When points D and E are connected, the length of \overline{DE} is half the length of base \overline{BC} .

Medians of a Trapezoid:

In a trapezoid, the length of median z is equal to half the length of the sum of both bases x and y.

$$z = \frac{1}{2}(x+y)$$

Types of Triangles:

Scalene: No sides are equal. Equilateral: All sides are equal. Isosceles: Two sides are equal.

Acute: All angles are $< 90^{\circ}$. Obtuse: There is an angle $> 90^{\circ}$. Right: There is an angle $= 90^{\circ}$.

External Angle Triangles Theorem:

When any side of a triangle is extended the value of its angle is supplementary to the angle next to it (adding to 180°). ex:

$$40^{\circ} + 140^{\circ} = 180^{\circ}$$

Volume:

Sphere: $V = \frac{4}{3}\pi r^3$

Cylinder: $V = \pi r^2 h$

Pyramid: $V = \frac{1}{3}bh$

Cone: $V = \frac{1}{3}\pi r^3$

Prism: V = bh

Area

Trapezoid: $A = \frac{1}{2}(b_1 + b_2)h$

Triangle: $A = \frac{1}{2}bh$

Rectangle: A = bhSquare: $A = s^2$

Circle: $A = \pi r^2$

Perimeter:

Rectangle:P = 2l + 2w

Square:P = 4s

Circle: Circumference = πd

Pythagorean Theorem:

$$a^2 + b^2 = c^2$$

Polygon Angle Formulas:

n=number of sides

Value of each Interior Angle: $\frac{180(n-2)}{n}$

Sum of Interior Angles: 180(n-2) Value of each Exterior Angle: $\frac{360}{n}$ Sum of Exterior Angles: 360°

How to Prove Circles Congruent \cong :

Circles are equal if they have congruent radii, diameters, circumference, and/or area.

Parts of a Circle:

Central Angles=Measure of Arc

Inscribed Angle= $\frac{1}{2}$ Arc

Tangent/Chord Angle = $\frac{1}{2}Arc$

Angle formed by Two Intersecting Chords= $\frac{1}{2}$ the sum of Intercepted Arcs $\angle ACB = 25^{\circ}$ and $\widehat{AB} = 50^{\circ}$ $\angle ABC = 80^{\circ}$ and $\widehat{AB} = 160^{\circ}$

$$ABC = 60 \text{ and } AB = 100$$

$$ABEA = \frac{1}{2} (\widehat{AB} + \widehat{CD})$$

$$ABEA = \frac{1}{2} (120^{\circ} + 50^{\circ})$$

$$ABEA = \frac{1}{2} (170^{\circ})$$

$$ABEA = 85^{\circ}$$

Tangents= $\frac{1}{2}$ the difference of Intercepted Arc

$$\angle BAC = \frac{1}{2} (B\widehat{D}C - B\widehat{C})$$

$$\angle BAC = \frac{1}{2} (200^{\circ} - 40^{\circ})$$

$$\angle BAC = \frac{1}{2} (160^{\circ})$$

$$\angle BAC = 80^{\circ}$$

Angle formed by two Secants = $\frac{1}{2}$ the difference of Intercepted Arc

$$\angle ACD = \frac{1}{2}(\widehat{AD} - \widehat{BE})$$

$$\angle ACD = \frac{1}{2}(120^{\circ} - 30^{\circ})$$

$$\angle ACD = \frac{1}{2}(90^{\circ})$$

$$\angle ACD = 45^{\circ}$$

Angle formed by a Secant and Tangent = $\frac{1}{2}$ the difference of Intercepted Arc

$$\angle ACD = \frac{1}{2} (\widehat{AD} - \widehat{BD})$$

$$\angle ACD = \frac{1}{2} (180^{\circ} - 70^{\circ})$$

$$\angle ACD = \frac{1}{2} (110^{\circ})$$

$$\angle ACD = 55^{\circ}$$

Circle Theorems:

In a circle when a tangent and radius come to touch, the form a 90° angle.

$$\angle ACB = 90^{\circ} \text{ and } \angle ACD = 90^{\circ}$$

In a circle when an angle is inscribed by a semicircle, it forms a 90° angle.

$$\angle BAC \cong 90^{\circ}$$

In a circle when two inscribed angles intercept the same arc, the angles are congruent.

When a quadrilateral is inscribed in a circle, opposite angles are supplementary.

$$\sphericalangle A + \sphericalangle C = 180^{\circ} \text{ and } \sphericalangle B + \sphericalangle D = 180^{\circ}$$

In a circle when central angles are congruent, arcs are also congruent. (and vice versa)

 $\sphericalangle COD \cong \sphericalangle AOB$ Therefore, $\widehat{AB} \cong \widehat{CD}$

In a circle when central angles are congruent, chords are also congruent. (and vice versa)

 $\sphericalangle COD \cong \sphericalangle AOB$ Therefore, $\widehat{AB} \cong \widehat{CD}$

Perimeter, Area and Volume:

Shape		Perimeter	Area	Volume
Triangle	ac	P=a+b+c	$A = \frac{1}{2}ab$	
Square	s	P=4s	$A = s^2$	
Rectangle	/ w	P=2l+2w	$A = l \times w$	
Trapezoid		P=a+b+2c	$A = \frac{1}{2}(a+b)h$	
Parallelogram	l	P=2l+2w	$A = l \times h$	

Circle	d	C=πd	$A = \pi r^2$	
Sphere	d		$SA = 4\pi r^2$	$V = \frac{4}{3}\pi r^3$
Cylinder	h		$SA = 2\pi r^2 + 2\pi rh$	$V = \pi r^2 h$
Cone	h			$V = \frac{1}{3}\pi r^2 h$
Pyramid	h			$V = lw\frac{1}{3}h$
Rectangular F	Prism l		SA = 2(lw + wh + lh)	$V = l \times w \times h$
Cube	s		$SA = 6s^2$	$V = s^3$