Solving Proportions Worksheet

Each problem could be set up this way:

1. Write the proportion.
$$\frac{8}{3} = \frac{192}{3}$$
2. Write the cross products
$$8 \cdot n = 192 \cdot 3$$
3. Multiply
$$8n = 576$$
4. Undo multiplication by using
$$\frac{8n}{3} = \frac{576}{3}$$

4. Undo multiplication by using division

5. Divide

8 8 n = 72

Solve each proportion. Be sure to set it up the correct way and show all work.

1.
$$\frac{4}{9} = \frac{10}{x}$$

5.
$$\frac{15}{21} = \frac{20}{y}$$

10.
$$\frac{350}{p} = 0.25$$

The Right Triangle Trigonometric Ratios – Although we won't prove this fact until a future geometry course, all right triangles that have a common acute angle are similar. Thus, the ratios of their corresponding sides are equal. A very long time ago, these ratios were given names. These trigonometric ratios (trig ratios) will be introduced through the following exercises, each of which refer to the diagram below.

In a right triangle:

tangent of an angle
$$=$$
 $\frac{\text{leg opposite of the angle}}{\text{leg adjacent to the angle}}$

Exercise #3:
$$\tan A = \tan C =$$

sine of an angle
$$=$$
 $\frac{\text{leg opposite of the angle}}{\text{hypotenuse}}$

Exercise #4:
$$\sin A = \sin C =$$

cosine of an angle
$$=$$
 $\frac{\text{leg adjacent to the angle}}{\text{hypotenuse}}$

Exercise #5:
$$\cos A = \cos C =$$

A Helpful Mnemonic For Remembering the Ratios:

SOH-CAH-TOA

Sine is Opposite over Hypotenuse - Cosine is Adjacent over Hypotenuse - Tangent is Opposite over Adjacent

Exercise #3: Find each of the following ratios for the right triangle shown below.

(a) $\sin A =$

(b) $\tan B =$

(c) cos A =

(d) $\tan A =$

(e) $\cos B =$

(f) $\sin B =$

Similar Right Triangles - Introduction to Trigonometry Algebra 1 Homework

Skills

For problems 1 - 6, use the triangle to the right to find the given trigonometric ratios.

3. tan N =

4.
$$\sin P =$$

5. $\cos P =$

6. tan P =

7. Given the right triangle shown, which of the following represents the value of tan A?

(1)
$$\frac{25}{24}$$

(3)
$$\frac{7}{24}$$

(2)
$$\frac{24}{7}$$

8. In the right triangle below, $\cos Q = ?$

- (1) $\frac{12}{5}$
- (3) $\frac{12}{17}$
- (2) $\frac{5}{12}$
- $(4) \frac{12}{13}$

Trigonometric Ratios

Find the value of each trigonometric ratio.

1) tan Z

2) cos *C*

3) sin *C*

4) tan *X*

5) $\cos A$

6) sin *A*

7) sin *Z*

8) sin *C*

9) cos Z

10) tan C

Find the value of each trigonometric ratio to the nearest ten-thousandth.

11) cos Z

12) cos *C*

13) tan C

14) tan A

15) tan C

18) sin Z

19) sin 48°

20) sin 38°

21) cos 61°

22) cos 51°

Critical thinking questions:

- 23) Can the sine of an angle ever equal 2? Why or why not?
- 24) $\sin x = \frac{1}{3}$ Find $\cos x$.

Find the missing side. Round to the nearest tenth.

10)

11)

12)

13)

14)

15

16)

Critical thinking question:

17) Write a new problem that is similar to the others on this worksheet. Solve the question you wrote.

Using Trigonometry to Solve for Missing Sides Algebra 1 Homework

Skill

In problems 1 through 3, determine the trigonometric ratio needed to solve for the missing side and then use this ratio to find the missing side.

1. In right triangle ABC, $m \angle A = 58^{\circ}$ and AB = 8. Find the length of each of the following. Round your answers to the nearest *tenth*.

2. In right triangle ABC, $m \angle B = 44^{\circ}$ and AB = 15. Find the length of each of the following. Round your answers to the nearest *tenth*.

(b) *BC*

3. In right triangle ABC, $m \angle C = 32^{\circ}$ and AB = 24. Find the length of each of the following. Round your answers to the nearest *tenth*.

(a) AC

(b) BC

4. Which of the following would give the length of hypotenuse \overline{PR} in the diagram below?

- (1) $8\cos(24^\circ)$
- $(3)8 \tan(24^\circ)$
- $(2) \frac{8}{\cos(24^\circ)}$
- $(4) \frac{8}{\tan(24^\circ)}$

Applications

5. An isosceles triangle has legs of length 16 and base angles that measure 48°. Find the height of the isosceles triangle to the *nearest tenth*. Hint – Create a right triangle by drawing the height.

6. Carlos walked 10 miles at an angle of 20° north of due east. To the nearest tenth of a mile, how far east, x, is Carlos from his starting point?

7. Students are trying to determine the height of the flagpole at Arlington High. They have measured out a horizontal distance of 40 feet from the flagpole and site the top of it at an angle of elevation of 52°. What is the height, h, of the flagpole? Round your answer to the nearest tenth of a foot.

Algebra 1, Unit #8 – Right Triangle Trigonometry – L5 The Arlington Algebra Project, LaGrangeville, NY 12540