Matrices

Day 1: Simplify. Write "undefined" for expressions that are undefined.

1)
$$\begin{bmatrix} 3 & 6 \\ 2 & 5 \\ 5 & 3 \end{bmatrix} + \begin{bmatrix} 4 & 1 \\ -1 & -3 \\ 1 & 5 \end{bmatrix}$$

$$2) -2 \begin{bmatrix} 4 & -1 & -5 \\ 1 & 6 & -1 \end{bmatrix}$$

$$3) -5 \begin{bmatrix} -3 \\ -5 \\ 0 \end{bmatrix}$$

$$\begin{array}{c|c}
-3 \\
1 \\
3 \\
-2
\end{array} + \begin{bmatrix}
-1 \\
-5 \\
1 \\
0
\end{array}$$

5)
$$\begin{bmatrix} -5 & 2 \end{bmatrix} + \begin{bmatrix} -3 & 1 \end{bmatrix}$$

6) -4
$$\begin{bmatrix} 1 \\ 6 \\ -3 \\ -5 \end{bmatrix}$$

7)
$$\begin{bmatrix} 4 & -5 & -5 \end{bmatrix} + 5 \begin{bmatrix} -4 & -3 & 5 \end{bmatrix}$$

$$8) \begin{bmatrix} -1 \\ -3 \\ 4 \end{bmatrix} - -3 \begin{bmatrix} -3 \\ -3 \\ 3 \end{bmatrix}$$

9)
$$\begin{bmatrix} -6 & -5 & -5 \end{bmatrix} - 4 \begin{bmatrix} -2 & -1 & -1 \end{bmatrix}$$

$$10) \begin{bmatrix} -6 \\ 5 \\ 0 \end{bmatrix} + \begin{bmatrix} -4 \\ -2 \\ 6 \end{bmatrix} + \begin{bmatrix} 1 \\ 5 \\ 5 \end{bmatrix}$$

Day 2: Simplify. Write "undefined" for expressions that are undefined.

11)
$$\begin{bmatrix} -6 & -4 & 1 \\ 3 & 5 & -6 \end{bmatrix} \cdot \begin{bmatrix} -3 & 3 \\ -5 & -2 \\ 2 & -3 \end{bmatrix}$$

$$12) \begin{bmatrix} 6 & -2 \\ 4 & 6 \end{bmatrix} \cdot \begin{bmatrix} -2 & -4 \\ 1 & -4 \end{bmatrix}$$

Evaluate each determinant.

13)
$$\begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix}$$

14)
$$\begin{vmatrix} -1 & -1 \\ 0 & -3 \end{vmatrix}$$

$$\begin{array}{c|cc}
-3 & -3 \\
4 & 0
\end{array}$$

•

Answers

Matrices

Day 1: Simplify. Write "undefined" for expressions that are undefined.

$$1) \begin{bmatrix} 3 & 6 \\ 2 & 5 \\ 5 & 3 \end{bmatrix} + \begin{bmatrix} 4 & 1 \\ -1 & -3 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2 \\ 6 & 8 \end{bmatrix}$$

$$2) -2 \begin{bmatrix} 4 & -1 & -5 \\ 1 & 6 & -1 \end{bmatrix}$$
$$\begin{bmatrix} -8 & 2 & 10 \\ -2 & -12 & 2 \end{bmatrix}$$

$$3) -5 \begin{bmatrix} -3 \\ -5 \\ 0 \end{bmatrix} \begin{bmatrix} 15 \\ 25 \\ 0 \end{bmatrix}$$

$$4) \begin{bmatrix} -3 \\ 1 \\ 3 \\ -2 \end{bmatrix} + \begin{bmatrix} -1 \\ -5 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} -4 \\ -4 \\ 4 \\ -2 \end{bmatrix}$$

5)
$$\begin{bmatrix} -5 & 2 \end{bmatrix} + \begin{bmatrix} -3 & 1 \end{bmatrix}$$
 $\begin{bmatrix} -8 & 3 \end{bmatrix}$

$$\begin{array}{c|c}
6 & -4 \\
6 \\
-3 \\
-5 \\
\end{array}$$

$$\begin{array}{c|c}
-4 \\
-24 \\
12 \\
20
\end{array}$$

7)
$$\begin{bmatrix} 4 & -5 & -5 \end{bmatrix} + 5 \begin{bmatrix} -4 & -3 & 5 \end{bmatrix}$$

$$\begin{array}{c|c}
8 & -1 \\
-3 \\
4 \\
\end{array}
 -3 \\
-3 \\
3 \\
\end{array}
 -10 \\
-12 \\
13$$

9)
$$\begin{bmatrix} -6 & -5 & -5 \end{bmatrix} - 4 \begin{bmatrix} -2 & -1 & -1 \end{bmatrix}$$
 $\begin{bmatrix} 2 & -1 & -1 \end{bmatrix}$

10)
$$\begin{bmatrix} -6 \\ 5 \\ 0 \end{bmatrix} + \begin{bmatrix} -4 \\ -2 \\ 6 \end{bmatrix} + \begin{bmatrix} 1 \\ 5 \\ 5 \end{bmatrix}$$
$$\begin{bmatrix} -9 \\ 8 \\ 11 \end{bmatrix}$$

Day 2: Simplify. Write "undefined" for expressions that are undefined.

$$11) \begin{bmatrix} -6 & -4 & 1 \\ 3 & 5 & -6 \end{bmatrix} \cdot \begin{bmatrix} -3 & 3 \\ -5 & -2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} 40 & -13 \\ -46 & 17 \end{bmatrix}$$

$$12) \begin{bmatrix} 6 & -2 \\ 4 & 6 \end{bmatrix} \cdot \begin{bmatrix} -2 & -4 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} -14 & -16 \\ -2 & -40 \end{bmatrix}$$

12)
$$\begin{bmatrix} 6 & -2 \\ 4 & 6 \end{bmatrix} \cdot \begin{bmatrix} -2 & -4 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} -14 & -16 \\ -2 & -40 \end{bmatrix}$$

Evaluate each determinant.

$$\begin{array}{c|cccc}
13) & 1 & -1 \\
2 & 1 & 3 \\
15) & -3 & -3 \\
4 & 0 & 12
\end{array}$$

14)
$$\begin{vmatrix} -1 & -1 \\ 0 & -3 \end{vmatrix}$$
 3

Find the inverse of each matrix.

17)
$$\begin{bmatrix} -9 & 8 \\ 4 & 6 \end{bmatrix}$$

$$18) \begin{bmatrix} 9 & 1 \\ 1 & 0 \end{bmatrix}$$

$$19) \begin{bmatrix} -8 & 7 \\ 0 & -2 \end{bmatrix}$$

$$20) \begin{bmatrix} -6 & 0 & 4 \\ -5 & -5 & 5 \\ 0 & -3 & 0 \end{bmatrix}$$

Day 3: Solve each system by substitution.

21)
$$3x - 2y = -6$$

 $-3x + y = 3$

22)
$$-3x + 7y = 0$$

 $y = -3x - 24$

Solve each system by elimination.

23)
$$3a-3b+c=14$$

 $-a+b+2c=0$
 $2a+3b-4c=-30$

24)
$$-5y - z = -2$$

 $-6x - 4y + 3z = -18$
 $-4x + 4y + 6z = -4$

25)
$$x + 5y + 5z = -23$$

 $x - 2y - 5z = 17$
 $5x + y - 5z = 5$

26)
$$r - 5s + 6t = 11$$

 $r + 3s - 6t = -13$
 $-4r + 4s - 5t = -16$

- 27) Jimmy's school is selling tickets to a play. On the first day of ticket sales the school sold 6 senior citizen tickets and 2 child tickets for a total of \$46. The school took in \$144 on the second day by selling 14 senior citizen tickets and 8 child tickets. What is the price each of one senior citizen ticket and one child ticket?
- 28) Darryl and Kathryn each improved their yards by planting daylilies and ivy. They bought their supplies from the same store. Darryl spent \$123 on 8 daylilies and 7 pots of ivy. Kathryn spent \$92 on 2 daylilies and 14 pots of ivy. Find the cost of one daylily and the cost of one pot of ivy.

Answers

Find the inverse of each matrix.

$$\begin{bmatrix}
-9 & 8 \\
4 & 6
\end{bmatrix}
\begin{bmatrix}
-\frac{3}{43} & \frac{4}{43} \\
\frac{2}{43} & \frac{9}{86}
\end{bmatrix}$$

19)
$$\begin{bmatrix} -8 & 7 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} -\frac{1}{8} & -\frac{7}{16} \\ 0 & -\frac{1}{2} \end{bmatrix}$$

$$18) \begin{bmatrix} 9 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -9 \end{bmatrix}$$

$$20) \begin{bmatrix} -6 & 0 & 4 \\ -5 & -5 & 5 \\ 0 & -3 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & \frac{2}{5} & -\frac{2}{3} \\ 0 & 0 & -\frac{1}{3} \\ -\frac{1}{2} & \frac{3}{5} & -1 \end{bmatrix}$$

Day 3: Solve each system by substitution.

21)
$$3x - 2y = -6$$

 $-3x + y = 3$
(0, 3)

22)
$$-3x + 7y = 0$$

 $y = -3x - 24$
 $(-7, -3)$

Solve each system by elimination.

23)
$$3a-3b+c=14$$

 $-a+b+2c=0$
 $2a+3b-4c=-30$
 $(-2,-6,2)$

24)
$$-5y - z = -2$$

 $-6x - 4y + 3z = -18$
 $-4x + 4y + 6z = -4$
(4, 0, 2)

25)
$$x + 5y + 5z = -23$$

 $x - 2y - 5z = 17$
 $5x + y - 5z = 5$
 $(-3, 0, -4)$

26)
$$r - 5s + 6t = 11$$

 $r + 3s - 6t = -13$
 $-4r + 4s - 5t = -16$
(2, 3, 4)

27) Jimmy's school is selling tickets to a play. On the first day of ticket sales the school sold 6 senior citizen tickets and 2 child tickets for a total of \$46. The school took in \$144 on the second day by selling 14 senior citizen tickets and 8 child tickets. What is the price each of one senior citizen ticket and one child ticket?

senior citizen ticket: \$4, child ticket: \$11

28) Darryl and Kathryn each improved their yards by planting daylilies and ivy. They bought their supplies from the same store. Darryl spent \$123 on 8 daylilies and 7 pots of ivy. Kathryn spent \$92 on 2 daylilies and 14 pots of ivy. Find the cost of one daylily and the cost of one pot of ivy.

daylily: \$11, pot of ivy: \$5