Logarithms

Definition: $y = \log_a x$ if and only if $x = a^y$, where a > 0. In other words, logarithms are exponents.

Remarks:

- $\log x$ always refers to \log base 10, i.e., $\log x = \log_{10} x$.
- $\ln x$ is called the natural logarithm and is used to represent $\log_e x$, where the irrational number $e\approx 2.71828$. Therefore, $\ln x=y$ if and only if $e^y=x$.
- Most calculators can directly compute logs base 10 and the natural log. For any other base it is necessary to use the change of base formula: $\log_b a = \frac{\ln a}{\ln b}$ or $\frac{\log_{10} a}{\log_{10} b}$.

Properties of Logarithms (Recall that logs are only defined for positive values of x.)

For the natural logarithm

$$1. \, \ln xy = \ln x + \ln y$$

$$2. \ln \frac{x}{y} = \ln x - \ln y$$

3.
$$\ln x^y = y \cdot \ln x$$

$$4. \ln e^x = x$$

$$5. \ e^{\ln x} = x$$

For logarithms base a

$$1. \, \log_a xy = \log_a x + \log_a y$$

$$2. \log_a \frac{x}{y} = \log_a x - \log_a y$$

3.
$$\log_a x^y = y \cdot \log_a x$$

$$4. \, \log_a a^x = x$$

$$5. \ a^{\log_a x} = x$$

Useful Identities for Logarithms

For the natural logarithm

1.
$$\ln e = 1$$

2.
$$\ln 1 = 0$$

For logarithms base a

1.
$$\log_a a = 1$$
, for all $a > 0$

2.
$$\log_a 1 = 0$$
, for all $a > 0$