Properties of Exponents

An exponent (also called power or degree) tells us how many times the base will be multiplied by itself. For example x^5 , the exponent is 5 and the base is x. This means that the variable x will be multiplied by itself 5 times. You can also think of this as x to the fifth power.

Below is a list of properties of exponents:

Properties	General Form	Application	Example
Product Rule Same base add exponents	$a^m a^n$	a^{m+n}	$x^5 x^3 = x^{5+3} = x^8$
Quotient Rule Same base subtract exponents	$\frac{a^m}{a^n}$	a^{m-n}	$\frac{x^9}{x^5} = x^{9-5} = x^4$
Power Rule I Power raised to a power multiply exponents.	$(a^m)^n$	a^{mn}	$(x^3)^4 = x^{3 \cdot 4} = x^{12}$
Power Rule II Product to power distribute to each base	$(ab)^m$	$a^m a^n$	$(4x^3)^2 = 4^2x^{3\cdot 2} = 16x^6$
Negative Exponent I Flip and change sign to positive	a^{-m}	$\frac{1}{a^m}$	$x^{-3} = \frac{1}{x^3}$
Negative Exponent II Flip and change sign to positive	$\frac{1}{a^{-m}}$	a^m	$\frac{1}{x^{-5}} = x^5$
Zero Exponent Anything to the zero power (except 0) is one	a^0	$a^{0} = 1$	$(-4x)^0 = 1$

• It is important to note that none of these applications can occur if the bases are not the same.

For example, $\frac{x^5}{y^3}$ cannot be simplified.

Using a Combination of Rules

At one point, you may be asked to use a combination of these properties.

Example:

$$\bullet \quad \frac{\left(2^3 y^2\right)^5}{2^{10} y^{16}}$$

→ Power Rule

$$\bullet \quad \frac{2^{3\cdot 5}y^{2\cdot 5}}{2^{10}y^{16}}$$

$$\bullet \quad \frac{2^{15}y^{10}}{2^{10}y^{16}}$$

→ Quotient Rule

•
$$2^{15-10}y^{10-16}$$

•
$$2^5y^{-6}$$

→ Negative Exponent

•
$$\frac{32}{y^6}$$

Example:

•
$$\left(\frac{p^{-4}q}{r^{-3}}\right)^{-3}$$
 \rightarrow Power Rule

- $\frac{p^{-4\cdot-3}q^{1\cdot-3}}{r^{-3\cdot-3}}$ Note: When a base does not have an exponent there is really a one as the power. So that, q is understood as q^1
- $\bullet \quad \frac{p^{12}q^{-3}}{r^9} \qquad \qquad \to \text{ Negative Exponents}$
- $\bullet \quad \frac{p^{12}}{q^3r^9}$