Practice Test

Polygons

1

What is the area of the isosceles trapezoid above?

- A) 238
- B) 252
- C) 276
- D) 308

2

What is the area of rhombus ABCD above?

- A) $20\sqrt{2}$
- B) $25\sqrt{2}$
- C) $50\sqrt{2}$
- D) $100\sqrt{2}$

3

In the figure above, \overline{EO} is the midsegment of trapezoid TRAP and \overline{RP} intersect \overline{EO} at point Z. If RA = 15 and EO = 18, what is the length of \overline{EZ} ?

4

A rectangle has a length that is 6 meters more than twice its width. What is the perimeter of the rectangle if the area of the rectangle is 1,620 square meters?

5

The figure above shows an equilateral triangle with sides of length a and three squares with sides of length a. If the area of the equilateral triangle is $25\sqrt{3}$, what is the sum of the areas of the three squares?

- A) 210
- B) 240
- C) 270
- D) 300

6

The perimeter of a rectangle is 5x and its length is $\frac{3}{2}x$. If the area of the rectangle is 294, what is the value of x?

7

In the figure above, what is the area of the region ABCD?

- A) $22\sqrt{3} + 30$
- B) $22\sqrt{3} + 36$
- C) $22\sqrt{3} + 42$
- D) $22\sqrt{3} + 48$

8

In the figure above, ABCD is a rectangle and BCFE is a square. If AB = 40, BC = 16, and $m\angle AGD = 45$, what is the area of the shaded region?

- A) 240
- B) 248
- C) 256
- D) 264

9

The figure above shows parallelogram $\,ABCD$. Which of the following equations represents the area of parallelogram $\,ABCD$?

- A) $12\cos x^{\circ} \times 9\sin x^{\circ}$
- B) $12 \times 9 \tan x^{\circ}$
- C) $12 \times 9 \cos x^{\circ}$
- D) $12 \times 9 \sin x^{\circ}$

10

In the figure above, ABCDEF is a regular hexagon with side lengths of 4. PQRS is a rectangle. What is the area of the shaded region?

- A) $8\sqrt{3}$
- B) $9\sqrt{3}$
- C) $10\sqrt{3}$
- D) $12\sqrt{3}$

Answers

Polygons

1. C

$$AE^2 + BE^2 = AB^2$$

 $AE^2 + 12^2 = 13^2$

Pythagorean Theorem

$$AE^2 + 12^2 = 13^2$$

$$AE^2 = 13^2 - 12^2 = 25$$

$$AE = \sqrt{25} = 5$$

Also DF = 5.

$$AD = AE + EF + DF = 5 + 18 + 5 = 28$$

Area of trapezoid = $\frac{1}{2}(AD + BC) \cdot BF$

$$=\frac{1}{2}(28+18)\cdot 12=276$$

Draw \overline{BF} perpendicular to \overline{AD} to form a 45°-45°-90° triangle.

In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the hypotenuse is $\sqrt{2}$ times as long as a leg. Therefore, $\sqrt{2}BF = AB$.

$$\sqrt{2}BF = 10$$
 Subs

$$BF = \frac{10}{\sqrt{2}} = \frac{10 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{10\sqrt{2}}{2} = 5\sqrt{2}$$

Area of rhombus ABCD

$$= \frac{1}{2}AD \cdot BF = \frac{1}{2}(10)(5\sqrt{2}) = 25\sqrt{2}$$

Answers

Polygons

The perimeter of the rectangle is 2(length + width) = 2(60 + 27) = 174

5. D

Area of an equilateral triangle with side length of $a = \frac{\sqrt{3}}{4}a^2$. Since the area of the equilateral

triangle is given as $25\sqrt{3}$, you can set up the following equation.

$$\frac{\sqrt{3}}{4}a^2 = 25\sqrt{3}$$
$$a^2 = 25\sqrt{3} \cdot \frac{4}{\sqrt{3}} = 100$$

The area of each square is a^2 , or 100, so the sum of the areas of the three squares is 3×100 , or 300.

6. 14

Let w = the width of the rectangle. The perimeter of the rectangle is given as 5x. Perimeter of rectangle = 2(length + width)

$$5x = 2\left(\frac{3}{2}x + w\right)$$
$$5x = 3x + 2w$$
$$2x = 2w$$
$$x = w$$

Area of rectangle = length \times width = 294

$$\frac{3}{2}x \cdot x = 294$$

$$x^2 = 294 \cdot \frac{2}{3} = 196$$

$$x = \sqrt{196} = 14$$

7. A

$$AC^2 = AB^2 + BC^2$$
 Pythagorean Theorem $AC^2 = 11^2 + (4\sqrt{3})^2$ Substitution $AC^2 = 121 + 48 = 169$ $AC = \sqrt{169} = 13$ Pythagorean Theorem $AC^2 = AD^2 + CD^2$ Pythagorean Theorem $AC^2 = AD^2 + CD^2$ Substitution

3. 10.5

The length of the midsegment of a trapezoid is the average of the lengths of the bases. Therefore,

$$EO = \frac{1}{2}(TP + RA) .$$

$$18 = \frac{1}{2}(TP + 15)$$
 Substitution
$$2 \times 18 = 2 \times \frac{1}{2}(TP + 15)$$

$$36 = TP + 15$$

$$21 = TP$$
In ΔTRP , $EZ = \frac{1}{2}TP = \frac{1}{2}(21) = 10.5$.

4. 174

Let w = the width of the rectangle in meters, then 2w + 6 = the length of the rectangle in meters.

Area of rectangle = length \times width

$$=(2w+6)\times w=2w^2+6w$$
.

Since the area of the rectangle is 1,620 square meters, you can set up the following equation.

$$2w^2 + 6w = 1620$$

$$2w^2 + 6w - 1620 = 0$$
 Make one side 0.
 $2(w^2 + 3w - 810) = 0$ Common factor is 2.

Use the quadratic formula to solve the equation, $w^2 + 3w - 810 = 0$.

$$w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-3 \pm \sqrt{3^2 - 4(1)(-810)}}{2(1)}$$
$$= \frac{-3 \pm \sqrt{3249}}{2} = \frac{-3 \pm 57}{2}$$

Since the width is positive, $w = \frac{-3+57}{2} = 27$. The length is 2w+6=2(27)+6=60.

Answers

Polygons

$$25 = CD^2$$
$$5 = CD$$

The area of region ABCD is the sum of the area of ΔABC and the area of ΔADC .

Area of the region ABCD

$$= \frac{1}{2}(11)(4\sqrt{3}) + \frac{1}{2}(12)(5)$$
$$= 22\sqrt{3} + 30$$

8. C

Since BCFE is a square,

$$BC = BE = CF = EF = 16$$
.

$$AE = AB - BE$$
$$= 40 - 16 = 24$$

Triangle AGD is a 45°-45°-90° triangle.

In a 45°-45°-90° triangle, the length of the two legs are equal in measure. Therefore,

$$AD = DG = 16$$
.

$$FG = DC - DG - CF$$

= $40 - 16 - 16 = 8$

Area of the shaded region

$$= \frac{1}{2}(AE + FG) \cdot EF$$
$$= \frac{1}{2}(24 + 8) \cdot 16 = 256$$

9. D

Draw \overline{BE} perpendicular to \overline{AD} .

In
$$\triangle ABE$$
, $\sin x^{\circ} = \frac{BE}{Q}$

Therefore, $BE = 9 \sin x^{\circ}$.

Area of parallelogram ABCD

$$= AD \times BE = 12 \times 9 \sin x^{\circ}$$

10. A

Draw the diagonals of a regular hexagon, \overline{AD} ,

$$\overline{BE}$$
, and \overline{CF} .

$$BE = BO + OE = 8$$
 and $QR = BE = 8$

Since *ABCDEF* is a regular hexagon, the diagonals intersect at the center of the hexagon. Let the point of intersection be *O*. The diagonals divide the hexagon into 6 equilateral triangles with side lengths of 4. Area of each equilateral triangle

with side lengths of 4 is
$$\frac{\sqrt{3}}{4}(4)^2 = 4\sqrt{3}$$
.

Draw \overline{OT} perpendicular to \overline{PS} .

Triangle AOT is a 30°-60°-90° triangle.

Therefore,
$$AT = \frac{1}{2}AO = \frac{1}{2}(4) = 2$$
 and

$$OT = \sqrt{3}AT = 2\sqrt{3} .$$

In rectangle PQRS, $RS = 2OT = 2(2\sqrt{3}) = 4\sqrt{3}$.

Area of rectangle $PQRS = QR \times RS$

$$= 8 \times 4\sqrt{3} = 32\sqrt{3}$$
.

Area of regular hexagon ABCDEF

 $= 6 \times$ area of the equilateral triangle

$$= 6 \times 4\sqrt{3} = 24\sqrt{3}$$

Area of shaded region

= area of rectangle - area of hexagon

$$=32\sqrt{3}-24\sqrt{3}=8\sqrt{3}$$
.