Practice Test

Circles

1

In the figure above, O is the center of the circle and \overline{AB} is a diameter. If the length of \overline{AC} is $4\sqrt{3}$ and $m\angle BAC = 30$, what is the area of circle O?

- A) 12π
- B) 16π
- C) 18π
- D) 24π

2

In the circle above, chord \overline{RS} is parallel to diameter \overline{PQ} . If the length of \overline{RS} is $\frac{3}{4}$ of the length of \overline{PQ} and the distance between the chord and the diameter is $2\sqrt{7}$, what is the radius of the circle?

- A) 6
- B) $3\sqrt{7}$
- C) 8
- D) $4\sqrt{7}$

3

In the figure above, the circle is tangent to the x-axis and has center (-4,-3). Which of the following equations represents the equation of the circle shown in the xy-plane above?

A)
$$(x+4)^2 + (y+3)^2 = 9$$

B)
$$(x-4)^2 + (y-3)^2 = 9$$

C)
$$(x+4)^2 + (y+3)^2 = 3$$

D)
$$(x-4)^2 + (y-3)^2 = 3$$

4

The figure above shows a semicircle with the lengths of the adjacent arcs a, a+1, a+2, a+3, and a+4. If the value of x is 42, what is the value of a?

- A) 7
- B) 8
- C) 9
- D) 10

5

In the figure above, the length of arc \widehat{AB} is π . What is the area of sector OAB?

A) 2π

B) $\frac{5}{2}\pi$

C) 3π

D) $\frac{7}{2}\pi$

6

$$x^2 - 4x + v^2 - 6x - 17 = 0$$

What is the area of the circle in the xy-plane above?

A) 20π

B) 24π

C) 26π

D) 30π

7

Which of the following is the equation of a circle that has a diameter of 8 units and is tangent to the graph of y = 2?

A) $(x+1)^2 + (y+2)^2 = 16$

B) $(x-1)^2 + (y-2)^2 = 16$

C) $(x+2)^2 + (y+1)^2 = 16$

D) $(x-2)^2 + (y-1)^2 = 16$

8

In the figure above, rectangle OPQR is inscribed in a quarter circle that has a radius of 9. If PQ = 7 what is the area of rectangle OPQR?

A) $24\sqrt{2}$

B) $26\sqrt{2}$

C) $28\sqrt{2}$

D) $30\sqrt{2}$

9

In a circle with center O, the central angle has a measure of $\frac{2\pi}{3}$ radians. The area of the sector formed by central angle AOB is what fraction of the area of the circle?

10

A wheel with a radius of 2.2 feet is turning at a constant rate of 400 revolutions per minute on a road. If the wheel traveled $k\pi$ miles in one hour what is the value of k? (1 mile = 5,280 feet)

Answers

Circles

diameter, which is given as $2\sqrt{7}$.

$$OR^2 = RT^2 + OT^2$$

Pythagorean Theorem

$$r^2 = (\frac{3}{4}r)^2 + (2\sqrt{7})^2$$

Substitution

$$r^2 = \frac{9}{16}r^2 + 28$$

$$r^2 - \frac{9}{16}r^2 = 28$$

$$\frac{7}{16}r^2 = 28$$

$$\frac{16}{7} \cdot \frac{7}{16} r^2 = \frac{16}{7} \cdot 28$$

$$r^2 = 64$$

 $r = \sqrt{64} = 1$

$$r = \sqrt{64} = 8$$

1. B

An angle inscribed in a semicircle is a right angle. Therefore, $\angle ACB = 90$.

So, $\triangle ABC$ is a 30°-60°-90° triangle.

In a 30°-60°-90° triangle, the hypotenuse is twice as long as the shorter leg and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

$$AC = \sqrt{3}BC$$

$$4\sqrt{3} = \sqrt{3}BC \qquad AC = 4\sqrt{3}$$

$$4 = BC$$

$$AB = 2BC = 2(4) = 8$$

Therefore, the radius of circle O is 4.

Area of circle $O = \pi(4)^2 = 16\pi$

2. C

Draw \overline{OR} and \overline{OT} as shown above. Let the radius of the circle be r, then OQ = OR = r.

Since the ratio of RS to QP is 3 to 4, the ratio of RT to OQ is also 3 to 4.

Therefore, $RT = \frac{3}{4}OQ = \frac{3}{4}r$.

OT is the distance between the chord and the

3. A

If the center of the circle is (-4, -3) and the circle is tangent to the x-axis, the radius is 3.

The equation is $(x-(-4))^2 + (y-(-3))^2 = 3^2$,

or
$$(x+4)^2 + (y+3)^2 = 9$$
.

4. D

The arc length of the semicircle is

$$(a+4)+(a+3)+(a+2)+(a+1)+a=5a+10$$
.

In a circle, the lengths of the arcs are proportional to the degree measures of the corresponding arcs.

Therefore, $\frac{\text{arc length of semicircle}}{a+4}$ 180°

$$\frac{5a+10}{180} = \frac{a+4}{42}$$

Substitution

$$42(5a+10) = 180(a+4)$$

Cross Products

$$210a + 420 = 180a + 720$$

$$30a = 300$$

$$a = 10$$

Answers

Circles

5. B

Length of arc
$$AB = 2\pi r \cdot \frac{m\angle AOB}{360}$$

$$=2\pi r\cdot\frac{36}{360}=\frac{\pi r}{5}$$

Since the length of the arc is given as π ,

$$\frac{\pi r}{5} = \pi$$
. Solving the equation for r gives $r = 5$.

Area of sector
$$AOB = \pi r^2 \cdot \frac{m \angle AOB}{360}$$

$$=\pi(5)^2 \cdot \frac{36}{360} = \frac{5}{2}\pi$$

6. D

$$x^{2} - 4x + y^{2} - 6x - 17 = 0$$
$$x^{2} - 4x + y^{2} - 6x = 17$$

To complete the square, add $(-4 \cdot \frac{1}{2})^2 = 4$ and

$$(-6 \cdot \frac{1}{2})^2 = 9$$
 to each side.

$$x^2 - 4x + 4 + y^2 - 6x + 9 = 17 + 4 + 9$$

$$(x-2)^2 + (y-3)^2 = 30$$

The radius of the circle is $\sqrt{30}$, the area of the circle is $\pi(\sqrt{30})^2 = 30\pi$

7. A

If the diameter of the circle is 8 units, the radius of the circle is 4 units. Since the radius of the circle is 4 units, the *y*-coordinate of the center

has to be 4 units above or below y = 2.

The y-coordinate of the center has to be either 6 or -2. Among the answer choices, only choice A has -2 as the y-coordinate.

No other answer choice has 6 or -2 as the y-coordinate of the center.

Choice A is correct.

8. C

Draw \overline{OQ} . Since \overline{OQ} is a radius, OQ = 9.

$$OP^2 + PQ^2 = OQ^2$$

Pythagorean Theorem

$$OP^2 + 7^2 = 9^2$$
 Substitution
 $OP^2 = 9^2 - 7^2 = 32$
 $OP = \sqrt{32} = \sqrt{16} \cdot \sqrt{2} = 4\sqrt{2}$
Area of rectangle $OPQR = OP \times PQ$
 $= 4\sqrt{2} \times 7 = 28\sqrt{2}$

9. 1

Area of sector
$$AOB = \pi r^2 \cdot \frac{m \angle AOB}{360}$$

The area of a sector is the fractional part of the area of a circle. The area of a sector formed by $\frac{2\pi}{3}$ radians of arc is $\frac{2\pi/3}{2\pi}$, or $\frac{1}{3}$, of the area

10.20

The distance the wheel travels in 1 minute is equal to the product of the circumference of the wheel and the number of revolutions per minute.

The distance the wheel travels in 1 minute $= 2\pi r \times$ the number of revolutions per minute

$$=2\pi(2.2 \text{ ft})\times400 = 1,760\pi \text{ ft}$$

Total distance traveled in 1 hour

$$= 1,760\pi$$
 ft \times 60 $= 105,600\pi$ ft

=
$$105,600\pi$$
 ft $\times \frac{1 \text{ mile}}{5,280 \text{ ft}} = 20\pi$ miles

Thus, k = 20.