SAMPLE SPACES AND BASIC PROBABILITY

EVENT: An outcome (called a simple event) or a combination of outcomes (called a compound event)

SAMPLE SPACE: Set of all possible simple events

EXAMPLE 1: Rolling 1 die: Sample Space: S = { ______}

EXAMPLE 2: A coin is tossed twice.

Find the probability of getting at least one head.

EXAMPLE 3: A coin is tossed three times.

Assume the coin is a fair coin $\,$ - it has equal probability of landing on Head (H) or Tail (T). Write the sample space.

- 3a. Find the probability that at least one head is obtained
- 3b. Find the probability that all three tosses have the same outcome
- 3c. Find the probability that the first and third tosses have the same outcome.

EXAMPLE 4: Two dice are tossed.

Find the probability of getting a sum of 8

Find the probability of getting a "double"

Find the probability of getting a sum of at least 8

Write the sample space.

- (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
- (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
- (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
- (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
- (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
- (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Notation

- P(E) = 0.8 is read as "the probability of event E is 0.8"
 - o P stands for probability
 - o () is read "of"; it surrounds the event.
 - o The event is written inside the parentheses
 - o The value of the probability is on the other side of the equals sign.
- For probability our book uses E^C to represent the complement of an event.
 - o E^C means event E does NOT happen
 - \circ This notation for complement is different notation than our book used for set complements: \overline{S} .