Basic Probability Formulas

<u>Complementary events</u>: The complement of event A is everything not in A. Complementary events are mutually exclusive events and together make up the sample space. The probability of the sample space is one.

<u>Independent events</u>: The occurrence of any one of the events does not affect the probabilities of the occurrences of the other events. Events A and B are independent if probability of A given B equals probability of A.

Dependent events (or non-independent events): Events that are not independent, i.e., P(A given B) ≠ P(A).

Mutually exclusive events (or disjoint events): If event A occurs, then event B cannot occur, and conversely.

<u>De Morgan's Rule</u> (one form): Via a double complement, A or B = $(A^c \text{ and } B^c)^c = \text{"not } [\text{ (not A) and (not B)]"}$. For example, "I want A, B, or both to work" (Reliability) equates to "I do not want both A and B not to work" (Safety).

Event	Details	Formula (from English to mathematical operations)
А	Probability of A, P(A)	P(A) is at or between zero and one: 0 ≤ P(A) ≤ 1
not A, A ^c	A ^c is the complement of A	Probability of not A = P(A°) = 1 - P(A)

Event	Details	Formula (from English to mathematical operations)
A and B	A and B are independent events	P(A and B) = P(A)*P(B)
	A and B are dependent events	$P(A \text{ and } B) = P(A)*P(B \mid A) = P(B)*P(A \mid B)$ as 2 forms
	A and B are mutually exclusive events	P(A and B) = 0

Event	Details	Formula (from English to mathematical operations)
A or B	A and B are independent events	P(A or B) = P(A) + P(B) - P(A)*P(B) conveniently expands to = 1 - [1 - P(A)]*[1 - P(B)] or is obtained from De Morgan's Rule
	A and B are dependent events	P(A or B) = P(A) + P(B) - P(A)*P(B A) as 1 of 2 forms
	A and B are mutually exclusive events	P(A or B) = P(A) + P(B)