1) What is the cosine of angle A in right triangle $\triangle ABC$ below?

G.
$$\frac{2}{3}$$

H.
$$\frac{\sqrt{5}}{3}$$

$$J. \frac{\sqrt{5}}{2}$$

K.
$$\frac{3}{\sqrt{5}}$$

For right triangle $\triangle RST$ shown below, what is $\tan R$?

3) Based on the triangle shown below, what is $\cos y$? D. $\frac{4}{3}$ E. $\frac{5}{3}$

4) If $\sin \alpha = \frac{12}{13}$, and $\cos \alpha = \frac{5}{13}$, then $\tan \alpha = ?$

F.
$$\frac{5}{12}$$
 G. $\frac{12}{5}$ H. $\frac{60}{13}$

G.
$$\frac{12}{5}$$

H.
$$\frac{60}{13}$$

J.
$$\frac{7}{13}$$
 K. $\frac{17}{13}$

K.
$$\frac{17}{13}$$

5) A 8-foot ladder leaning against the wall makes a 60° angle with the floor. What is the height H of the ladder where it touches the wall?

J.
$$\frac{8}{\sin 60}$$

K.
$$\frac{8}{\cos 60}$$

6) An object 4 feet tall casts a 3-foot shadow when the angle of elevation of the sun is θ what is $\tan(\theta)$?

F.
$$\frac{3}{4}$$

H.
$$\frac{4}{3}$$

The sides of a triangle are 5, 12 and 13 inches long. What is the angle between the 2 shortest sides?

8) \overline{CD} is an altitude of equilateral triangle $\triangle ABC$. If \overline{CD} is $6\sqrt{3}$ units long, how many units long is \overline{AC} ?

F.
$$3\sqrt{3}$$

J.
$$12\sqrt{3}$$

9) In the right angle triangle below, if $\angle C$ has a sine of, $\frac{2}{\sqrt{29}}$ a cosine of $\frac{5}{\sqrt{29}}$, and a tangent of $\frac{2}{5}$, how many inches long is \overline{AB} ?

10) If tangent of an angle is $\frac{1}{2}$, what is the cosine of the same angle?

B.
$$\frac{1}{2}$$

C.
$$\frac{1}{5}$$

D.
$$\frac{2\sqrt{5}}{5}$$

11) From a hot air balloon, the angle between a radio antenna straight below and the base of the library downtown is 57°. If the distance between the radio antenna and the library is 1.3 miles, how many miles high is the balloon?

A.
$$1.3 \sin 57^{\circ}$$

C. $\frac{1.3}{\sin 57^{\circ}}$

D.
$$\frac{1.3}{\cos 57^{\circ}}$$
 E. $\frac{1.3}{\tan 57^{\circ}}$

12) In $\triangle ABC$, shown below, the measure of $\angle B$ is 41°, the measure of $\angle C$ is 34°, and \overline{AB} is 25 units long. Which of the following is an expression for the length, in units, of \overline{BC} ? (Note: The law of sines states that, for any triangle, the ratios of the sines of the interior angles to the lengths of the sides opposite those angles are equal.)

D. $\frac{25 \sin 75^{\circ}}{\sin 41^{\circ}}$ E. $\frac{25 \sin 41^{\circ}}{\sin 105^{\circ}}$

sin 75°

13) A surveyor took and recorded the measurements shown in the figure below. If the surveyor wants to use these 3 measurements to calculate the length of the pond, which of the following would be the most directly applicable?

- F. The ratios for the side lengths of 30°-60°-90° triangles
- G. The ratios for the side lengths of 45°-45°-90° triangles
- H. The law of cosines: For any $\triangle ABC$, where a is the length of the opposite $\angle A$, b is the length of the opposite $\angle B$, and c is the length of the side opposite $\angle C$, $a^2 = b^2 + c^2 2bc \cos(\angle A)$
- J. The Pythagorean theorem
- K. A formula for the area of a triangle

Answers

- 1 H
- 2 *G*
- 3 A
- 4 *G*
- 5 F
- 6 H
- 7 D
- 8 H
- 9 H
- 10 D
- 11 E
- 12 B
- 13 H